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C H A P T E R   O U T L I N E

4.1  Randomness 

4.2  Probability Models 
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4.5  Means and Variances 
of Random Variables

Probability: The Study  
of Randomness 

Introduction
In this chapter, we study basic concepts of probability. The first two chap-
ters focussed on exploring and describing data in hand. In Chapter 3, we 
learned how to produce quality data that can be reliably used to infer con-
clusions about the wider population.

You might then ask yourself, “Where does the study of probability fit in 
our data journey?’’ The answer lies in recognizing that the reasoning of statis-
tical inference rests on asking, “How often would this method give a correct 
answer if I used it very many times?’’ When we produce data by random sam-
pling a randomized comparative experiment, the laws of probability answer 
the question, “What would happen if we repeated this process many times?’’ 
As such, probability can be viewed as the backbone of statistical inference.

The importance of probability ideas for statistical inference is reason 
enough to delve into this chapter. However, our study of probability is fur-
ther motivated by the fact that businesses use probability and related con-
cepts as the basis for decision making in a world full of risk and uncertainty. 

As a business student reading this book, there is a good chance you are 
pursuing an accounting major with the hope to become a certified public 
accountant (CPA). Did you know that accountants can boost their earn-
ings potential by additional 10% to 25% by adding a certification for fraud 
detection? Certified fraud accountants must have in their toolkit a prob-
ability distribution that we study in this chapter. Liberty Mutual Insurance, 
Citibank, MasterCard, Deloitte, and the FBI are just a few of the organiza-
tions that employ fraud accountants.

With shrinking product life cycles, what was a “hot’’ seller quickly becomes 
obsolete. Imagine the challenge for Nike in its decision of how many Dallas 
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174	 CHAPTER 4  Probability: The Study of Randomness  

Cowboys jersey replicas to produce with a certain player’s name. If Nike makes too 
many and the player leaves for another team, Nike and shops selling NFL apparel 
will absorb considerable losses when stuck with a nearly unsellable product. We 
will explore how probability can help industries with short product life cycles make 
better decisions.

Financial advisers at wealth management firms such as Wells Fargo, Fidelity Invest-
ments, and J.P. Morgan Chase routinely provide advice to their clients on invest-
ments. Which ones (stocks, mutual funds, bonds, etc.) should their clients buy? How 
much in each possible investment should their clients invest? We will learn that their 
advice is guided by concepts studied in this chapter.

Online bookseller Amazon.com serves its U.S. customers with inventory 
consolidated in only a handful of warehouses. Each Amazon warehouse pools 
demand over a large geographical area, which leads to lower total inventory versus 
having many smaller warehouses. We will discover the principle as to why this 
strategy provides Amazon with a competitive edge.

4.1 Randomness
Toss a coin, or choose an SRS. The result cannot be predicted with certainty in 
advance because the result will vary when you toss the coin or choose the sam-
ple again. But there is still a regular pattern in the results, a pattern that emerges 
clearly only after many repetitions. This remarkable fact is the basis for the idea of 
probability.

EXAMPLE 4.1  Coin Tossing

When you toss a coin, there are only two possible outcomes, heads or tails. Figure 4.1  
shows the results of tossing a coin 5000 times twice. For each number of tosses from 
1 to 5000, we have plotted the proportion of those tosses that gave a head. Trial A 
(solid line) begins tail, head, tail, tail. You can see that the proportion of heads for 
Trial A starts at 0 on the first toss, rises to 0.5 when the second toss gives a head, 
then falls to 0.33 and 0.25 as we get two more tails. Trial B, on the other hand, starts 
with five straight heads, so the proportion of heads is 1 until the sixth toss.
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FIGURE 4.1  The propor-
tion of tosses of a coin that 
give a head changes as we 
make more tosses. Eventu-
ally, however, the proportion 
approaches 0.5, the prob-
ability of a head. This figure 
shows the results of two trials 
of 5000 tosses each.

reminder
simple random sample 

(SRS), p. 132
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4.1  Randomness    175

The proportion of tosses that produce heads is quite variable at first. Trial A 
starts low and Trial B starts high. As we make more and more tosses, however, the 
proportion of heads for both trials gets close to 0.5 and stays there. If we made yet a 
third trial at tossing the coin 5000 times, the proportion of heads would again settle 
down to 0.5 in the long run. We say that 0.5 is the probability of a head. The prob-
ability 0.5 appears as a horizontal line on the graph. 

The Probability applet available on the text website animates Figure 4.1. It 
allows you to choose the probability of a head and simulate any number of tosses of 
a coin with that probability. Try it. As with Figure 4.1, you will find for your own 
trial that the proportion of heads gradually settles down close to the probability you 
chose. Equally important, you will find that the proportion in a small or moderate 
number of tosses can be far from the probability. Many people prematurely assess 
the probability of a phenomenon based only on short-term outcomes. Probability 
describes only what happens in the long run.

The language of probability
“Random’’ in statistics is not a synonym for “haphazard’’ but a description of a kind 
of order that emerges only in the long run. We often encounter the unpredictable side 
of randomness in our everyday experience, but we rarely see enough repetitions of 
the same random phenomenon to observe the long-term regularity that probability 
describes. You can see that regularity emerging in Figure 4.1. In the very long run, 
the proportion of tosses that give a head is 0.5. This is the intuitive idea of prob-
ability. Probability 0.5 means “occurs half the time in a very large number of trials.’’

The idea of probability is empirical. That is, it is based on observation rather 
than theorizing. We might suspect that a coin has probability 0.5 of coming up heads 
just because the coin has two sides. Probability describes what happens in very many 
trials, and we must actually observe many trials to pin down a probability. In the 
case of tossing a coin, some diligent people have, in fact, made thousands of tosses.

EXAMPLE 4.2  Some Coin Tossers

The French naturalist Count Buffon (1707–1788) tossed a coin 4040 times. Result: 
2048 heads, or proportion 2048/4040 5 0.5069 for heads.

Around 1900, the English statistician Karl Pearson heroically tossed a coin 
24,000 times. Result: 12,012 heads, a proportion of 0.5005.

While imprisoned by the Germans during World War II, the South African 
mathematician John Kerrich tossed a coin 10,000 times. Result: 5067 heads, a pro-
portion of 0.5067. 

The coin-tossing experiments of these individuals did not just result in heads. 
They also observed the other possible outcome of tails. Pearson, for example, found 
the proportion of tails to be 0.4995. Their experiments revealed the long-term regu-
larity across all the possible outcomes. In other words, they were able to pin down 
the distribution of outcomes.

Randomness and Probability 
We call a phenomenon random if individual outcomes are uncertain but 
there is, nonetheless, a regular distribution of outcomes in a large number of 
repetitions.

The probability of any outcome of a random phenomenon is the propor-
tion of times the outcome would occur in a very long series of repetitions. 

distribution
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176	 CHAPTER 4  Probability: The Study of Randomness  

Apply your Knowledge

4.1  Not just coins.  We introduced this chapter with the most recognizable 
experiment of chance, the coin toss. The coin has two random outcomes, heads 
and tails. But, this book is not about coin tossing per se. Provide two examples of 
business scenarios in which there are two distinct but uncertain outcomes.

Thinking about randomness and probability
Randomness is everywhere. In our personal lives, we observe randomness with 
varying outdoor temperatures, our blood pressure readings, our commuting times 
to school or work, and the scores of our favorite sports team. Businesses exist in a 
world of randomness in the forms of varying dimensions on manufactured parts, 
customers’ waiting times, demand for products or services, prices of a company’s 
stock, injuries in the workplace, and customers’ abilities to pay off a loan.

Probability theory is the branch of mathematics that describes random 
behavior; its advanced study entails high-level mathematics. However, as we 
will discover, many of the key ideas are basic. Managers who assimilate these 
key ideas are better able to cope with the stark realities of randomness. They 
become better decision makers.

Of course, we never observe a probability exactly. We could always continue 
tossing the coin, for example. Mathematical probability is an idealization based on 
imagining what would happen in an indefinitely long series of trials. The best way 
to understand randomness is to observe random behavior—not only the long-run 
regularity but the unpredictable results of short runs. You can do this with physical 
devices such as coins and dice, but computer simulations of random behavior allow 
faster exploration. As you explore randomness, remember: 

•	 You must have a long series of independent trials. That is, the outcome of one 
trial must not influence the outcome of any other. Imagine a crooked gambling 
house where the operator of a roulette wheel can stop it where she chooses—she 
can prevent the proportion of “red’’ from settling down to a fixed number. These 
trials are not independent.

•	 The idea of probability is empirical. Computer simulations start with given prob-
abilities and imitate random behavior, but we can estimate a real-world probabil-
ity only by actually observing many trials.

•	 Nonetheless, computer simulations are very useful because we need long runs 
of trials. In situations such as coin tossing, the proportion of an outcome often 
requires several hundred trials to settle down to the probability of that outcome. 
Exploration of probability with physical devices is typically too time consuming. 
Short runs give only rough estimates of a probability.

independence

SECTION 4.1  Summary

•	 A random phenomenon has outcomes that we cannot predict with certainty but 
that, nonetheless, have a regular distribution in very many repetitions.

•	 The probability of an event is the proportion of times the event occurs in many 
repeated trials of a random phenomenon.

•	 Trials are independent if the outcome of one trial does not influence the outcome 
of any other trial.
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4.1  Randomness    177

SECTION 4.1  Exercises 

For Exercise 4.1, see page 176.

4.2  Are these phenomena random?  Identify each of 
the following phenomena as random or not. Give rea-
sons for your answers. 
(a) The outside temperature in Chicago at noon on  
New Year’s Day. 
(b) The first character to the right of the “@’’ symbol in 
an employee’s company email address. 
(c) You draw an ace from a well-shuffled deck of 52 
cards.

4.3  Interpret the probabilities.  Refer to the previous 
exercise. In each case, interpret the term “probability’’ 
for the phenomena that are random. For those that are 
not random, explain why the term “probability’’ does 
not apply.

4.4  Are the trials independent?  For each of the fol-
lowing situations, identify the trials as independent or 
not. Explain your answers. 
(a) The outside temperature in Chicago at noon on New 
Year’s Day, each year for the next five years. 
(b) The number of tweets that you receive on the next  
10 Mondays. 
(c) Your grades in the five courses that you are taking 
this semester.

4.5  Financial fraud.  It has been estimated that 
around one in six fraud victims knew the perpetrator 
as a friend or acquaintance. Financial fraud includes 
crimes such as unauthorized credit card charges, with-
drawal of money from a savings or checking account, 
and opening an account in someone else’s name.  
Suppose you want to use a physical device to simulate 
the outcome that a fraud victim knew the perpetra-
tor versus the outcome that the fraud victim does not 
know the perpetrator. What device would you use to 
conduct a simulation experiment? Explain how you 
would match the outcomes of the device with the fraud 
scenario.

4.6  Credit monitoring.  In a recent study of consumers,  
25% reported purchasing a credit-monitoring  
product that alerts them to any activity on their credit 
report. Suppose you want to use a physical device to 
simulate the outcome of a consumer purchasing the 
credit-monitoring product versus the outcome of the 
consumer not purchasing the product. Describe how 
you could use two fair coins to conduct a simulation 
experiment to mimic consumer behavior. In particular, 
what outcomes of the two flipped coins would you 
associate with purchasing the product versus what 

outcomes would you associate with not purchasing the 
product?

4.7  Random digits.  As discussed in Chapter 3, gen-
eration of random numbers is one approach for obtain-
ing a simple random sample (SRS). If we were to look 
at the random generation of digits, the mechanism 
should give each digit probability 0.1. Consider the 
digit “0’’ in particular. 
(a) The table of random digits (Table B) was produced 
by a random mechanism that gives each digit probability 
0.1 of being a 0. What proportion of the first 200 digits 
in the table are 0s? This proportion is an estimate, based 
on 200 repetitions, of the true probability, which in this 
case is known to be 0.1. 
(b) Now use software assigned by your instructor: 

•	 Excel users: Enter the formula 5RANDBE-
TWEEN(0, 9) in cell A1. Now, drag and copy the 
contents of cell A1 into cells A2:A1000. You will find 
1000 random digits appear. Any attempt to copy these 
digits for sorting purposes will result in the digits 
changing. You will need to “freeze’’ the generated 
values. To do so, highlight column 1 and copy the 
contents and then Paste Special as Values the con-
tents into the same or any other column. The values 
will now not change. Finally, use Excel to sort the 
values in ascending order.

•	 JMP users: With a new data table, right-click on the 
header of Column 1 and choose Column Info. In the 
drag-down dialog box named Initialize Data, pick 
Random option. Choose the bullet option of Random 
Integer, and set Minimum/Maximum to 0 and 9. Input 
the value of 1000 into the Number of rows box, and 
then click OK. The values can then be sorted in ascend-
ing order using the Sort option found under Tables.

•	 Minitab users: Do the following pull-down sequence: 
Calc  Random Data  Integer. Enter “1000’’ in the 
Number of rows of data to generate box, type “c1’’ in 
the Store in column(s) box, enter “0’’ in the Minimum 
value box, and enter “9’’ in the Maximum box. Click 
OK to find 1000 realizations of X outputted in the work-
sheet. The values can then be sorted in ascending order 
using the Sort option found under Data.

Based on the software you used, what proportion of the 
1000 randomly generated digits are 0s? Is this proportion 
close to 0.1?

4.8  Are McDonald’s prices independent?  Over 
time, stock prices are always on the move. Consider  
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178	 CHAPTER 4  Probability: The Study of Randomness  

a time series of 1126 consecutive daily prices of 
McDonald’s stock from the beginning of January 2010 
to the near the end of June 2014.1    MCD

(a) Using software, plot the prices over time. Are the 
prices constant over time? Describe the nature of the 
price movement over time.
(b) Now consider the relationship between price on any 
given day with the price on the prior day. The previous 
day’s price is sometimes referred to as the lag price. You 
will want to get the lagged prices in another column of 
your software: 

•	 Excel users: Highlight and copy the price values,  
and paste them in a new column shifted down by  
one row. 

•	 JMP users: Click on the price column header name  
to highlight the column of price values. Copy the 
highlighted values. Now click anywhere on the  
nearest empty column, resulting in the column being 
filled with missing values. Double-click on the cell 
in row 2 of the newly formed column. With row 2 
cell open, paste the price values to create a column of 
lagged prices. (Note: A column of lagged values can 
also be created with JMP’s Lag function found in the 
Formula option of the column.) 

•	 Minitab users: Stat  Time Series  Lag. 

Refering back to Chapter 2 and scatterplots, create a 
scatterplot of McDonald’s price on a given day versus 
the price on the previous day. Does the scatterplot 
suggest that the price series behaves as a series of 
independent trials? Explain why or why not.

4.9  Are McDonald’s price changes independent?   
Refer to the daily price series of McDonald’s stock 
in Exercise 4.8. Instead of looking at the prices them-
selves, consider now the daily changes in prices found 
in the provided data file.    MCD

(a) Using software, plot the price changes over time. 
Describe the nature of the price changes over time.
(b) Now consider the relationship between a given 
price change and the previous price change. Create  
a lag of price changes by following the steps of 
Exercise 4.8(b). Create a scatterplot of price change 
versus the previous price change. Does the scatterplot 
seem to suggest that the price-change series behaves 
essentially as a series of independent trials? Explain 
why or why not. 
(c) This exercise only explored the relationship or 
lack of it between price changes of successive days. 
If you want to feel more confident about a conclusion 
of independence of price changes over time, what 
additional scatterplots might you consider creating?

4.10  Use the Probability applet.  The idea of 
probability is that the proportion of heads in 

many tosses of a balanced coin eventually gets close 
to 0.5. But does the actual count of heads get close to 
one-half the number of tosses? Let’s find out. Set the 
“Probability of Heads’’ in the Probability applet to 
0.5 and the number of tosses to 50. You can extend the 
number of tosses by clicking “Toss’’ again to get 50 
more. Don’t click “Reset’’ during this exercise.
(a) After 50 tosses, what is the proportion of heads? 
What is the count of heads? What is the difference 
between the count of heads and 25 (one-half the number 
of tosses)? 
(b) Keep going to 150 tosses. Again record the 
proportion and count of heads and the difference 
between the count and 75 (half the number of tosses). 
(c) Keep going. Stop at 300 tosses and again at 600 
tosses to record the same facts. Although it may take a 
long time, the laws of probability say that the proportion 
of heads will always get close to 0.5 and also that the 
difference between the count of heads and half the 
number of tosses will always grow without limit.

4.11  A question about dice.  Here is a question 
that a French gambler asked the mathematicians 

Fermat and Pascal at the very beginning of probability 
theory: what is the probability of getting at least one 6 
in rolling four dice? The Law of Large Numbers applet 
allows you to roll several dice and watch the outcomes. 
(Ignore the title of the applet for now.) Because simu-
lation—just like real random phenomena—often takes 
very many trials to estimate a probability accurately, 
let’s simplify the question: is this probability clearly 
greater than 0.5, clearly less than 0.5, or quite close 
to 0.5? Use the applet to roll four dice until you can 
confidently answer this question. You will have to set 
“Rolls’’ to 1 so that you have time to look at the four 
up-faces. Keep clicking “Roll dice’’ to roll again and 
again. How many times did you roll four dice? What 
percent of your rolls produced at least one 6?

4.12  Proportions of McDonald’s price changes.   
Continue the study of daily price changes of  
McDonald’s stock from the Exercise 4.9.  
Consider three possible outcomes: (1) positive price 
change, (2) no price change, and (3) negative price 
change.    MCD
(a) Find the proportions of each of these outcomes. This 
is most easily done by sorting the price change data into 
another column of the software and then counting the 
number of negative, zero, and positive values.
(b) Explain why the proportions found in part (a) are 
reasonable estimates for the true probabilities.
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4.2  Probability Models    179

4.13  Thinking about probability statements.  Probabil-
ity is a measure of how likely an event is to occur. Match 
one of the probabilities that follow with each statement of 
likelihood given. (The probability is usually a more exact 
measure of likelihood than is the verbal statement.) 

0  0.01  0.3  0.6  0.99  1

(a) This event is impossible. It can never occur.
(b) This event is certain. It will occur on every trial.
(c) This event is very unlikely, but it will occur once in a 
while in a long sequence of trials.
(d) This event will occur more often than not.

4.2 Probability Models
The idea of probability as a proportion of outcomes in very many repeated trials 
guides our intuition but is hard to express in mathematical form. A description of a 
random phenomenon in the language of mathematics is called a probability model. 
To see how to proceed, think first about a very simple random phenomenon, tossing 
a coin once. When we toss a coin, we cannot know the outcome in advance. What 
do we know? We are willing to say that the outcome will be either heads or tails. 
Because the coin appears to be balanced, we believe that each of these outcomes has 
probability 1/2. This description of coin tossing has two parts: 

1.  a list of possible outcomes

2.  a probability for each outcome

This two-part description is the starting point for a probability model. We begin by 
describing the outcomes of a random phenomenon and then learn how to assign 
these probabilities ourselves.

Sample spaces
A probability model first tells us what outcomes are possible.

Sample Space
The sample space S of a random phenomenon is the set of all distinct possible 
outcomes. 

The name “sample space’’ is natural in random sampling, where each possible 
outcome is a sample and the sample space contains all possible samples. To specify 
S, we must state what constitutes an individual outcome and then state which out-
comes can occur. We often have some freedom in defining the sample space, so the 
choice of S is a matter of convenience as well as correctness. The idea of a sample 
space, and the freedom we may have in specifying it, are best illustrated by examples.

EXAMPLE 4.3  Sample Space for Tossing a Coin

Toss a coin. There are only two possible outcomes, and the sample space is 

S 5 {heads, tails} 

or, more briefly, S 5 {H, T}.

EXAMPLE 4.4  Sample Space for Random Digits

Type “5RANDBETWEEN(0,9)’’ into any Excel cell and hit enter. Record the value 
of the digit that appears in the cell. The possible outcomes are 

S 5 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

probability model
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180	 CHAPTER 4  Probability: The Study of Randomness  

EXAMPLE 4.5  Sample Space for Tossing a Coin Four Times

Toss a coin four times and record the results. That’s a bit vague. To be exact, record 
the results of each of the four tosses in order. A possible outcome is then HTTH. 
Counting shows that there are 16 possible outcomes. The sample space S is the set 
of all 16 strings of four toss results—that is, strings of H’s and T’s.

Suppose that our only interest is the number of heads in four tosses. Now 
we can be exact in a simpler fashion. The random phenomenon is to toss a coin 
four times and count the number of heads. The sample space contains only five 
outcomes: 

S 5 {0, 1, 2, 3, 4} 

This example illustrates the importance of carefully specifying what constitutes 
an individual outcome. 

Although these examples seem remote from the practice of statistics, the con-
nection is surprisingly close. Suppose that in conducting a marketing survey, you 
select four people at random from a large population and ask each if he or she 
has used a given product. The answers are Yes or No. The possible outcomes—the 
sample space—are exactly as in Example 4.5 if we replace heads by Yes and tails 
by No. Similarly, the possible outcomes of an SRS of 1500 people are the same in 
principle as the possible outcomes of tossing a coin 1500 times. One of the great 
advantages of mathematics is that the essential features of quite different phenomena 
can be described by the same mathematical model, which, in our case, is the prob-
ability model.

The sample spaces considered so far correspond to situations in which there is a 
finite list of all the possible values. There are other sample spaces in which, theoreti-
cally, the list of outcomes is infinite.

EXAMPLE 4.6  Using Software

Most statistical software has a function that will generate a random number between 
0 and 1. The sample space is 

S 5 {all numbers between 0 and 1} 

This S is a mathematical idealization with an infinite number of outcomes. In reality, 
any specific random number generator produces numbers with some limited number 
of decimal places so that, strictly speaking, not all numbers between 0 and 1 are 
possible outcomes. For example, in default mode, Excel reports random numbers 
like 0.798249, with six decimal places. The entire interval from 0 to 1 is easier to 
think about. It also has the advantage of being a suitable sample space for different 
software systems that produce random numbers with different numbers of digits. 

Apply your Knowledge

4.14  Describing sample spaces.  In each of the following situations, describe 
a sample space S for the random phenomenon. In some cases, you have some 
freedom in your choice of S.

(a) A new business is started. After two years, it is either still in business or it 
has closed.
(b) A student enrolls in a business statistics course and, at the end of the 
semester, receives a letter grade.
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4.2  Probability Models    181

(c) A food safety inspector tests four randomly chosen henhouse areas for the 
presence of Salmonella or not. You record the sequence of results.
(d) A food safety inspector tests four randomly chosen henhouse areas for 
the presence of Salmonella or not. You record the number of areas that show 
contamination.

4.15  Describing sample spaces.  In each of the following situations, describe 
a sample space S for the random phenomenon. Explain why, theoretically, a list 
of all possible outcomes is not finite.

(a) You record the number of tosses of a die until you observe a six. 
(b) You record the number of tweets per week that a randomly selected student 
makes.

A sample space S lists the possible outcomes of a random phenomenon. To 
complete a mathematical description of the random phenomenon, we must also give 
the probabilities with which these outcomes occur.

The true long-term proportion of any outcome—say, “exactly two heads in four 
tosses of a coin’’—can be found only empirically, and then only approximately. How 
then can we describe probability mathematically? Rather than immediately attempt-
ing to give “correct’’ probabilities, let’s confront the easier task of laying down rules 
that any assignment of probabilities must satisfy. We need to assign probabilities not 
only to single outcomes but also to sets of outcomes.

Event 
An event is an outcome or a set of outcomes of a random phenomenon. That 
is, an event is a subset of the sample space. 

EXAMPLE 4.7  Exactly Two Heads in Four Tosses

Take the sample space S for four tosses of a coin to be the 16 possible outcomes in 
the form HTHH. Then “exactly two heads’’ is an event. Call this event A. The event 
A expressed as a set of outcomes is 

A 5{TTHH, THTH, THHT, HTTH, HTHT, HHTT} 

In a probability model, events have probabilities. What properties must any 
assignment of probabilities to events have? Here are some basic facts about any 
probability model. These facts follow from the idea of probability as “the long-run 
proportion of repetitions on which an event occurs.’’

1.  Any probability is a number between 0 and 1. Any proportion is a number 
between 0 and 1, so any probability is also a number between 0 and 1. An event 
with probability 0 never occurs, and an event with probability 1 occurs on every 
trial. An event with probability 0.5 occurs in half the trials in the long run.

2.  All possible outcomes of the sample space together must have probability 1.  
Because every trial will produce an outcome, the sum of the probabilities for all 
possible outcomes must be exactly 1.

3.  If two events have no outcomes in common, the probability that one or the 
other occurs is the sum of their individual probabilities. If one event occurs 
in 40% of all trials, a different event occurs in 25% of all trials, and the two can 
never occur together, then one or the other occurs on 65% of all trials because 
40% 1 25% 5 65%.
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182	 CHAPTER 4  Probability: The Study of Randomness  

4.  The probability that an event does not occur is 1 minus the probability that 
the event does occur. If an event occurs in 70% of all trials, it fails to occur in the 
other 30%. The probability that an event occurs and the probability that it does not 
occur always add to 100%, or 1.

Probability rules
Formal probability uses mathematical notation to state Facts 1 to 4 more concisely. 
We use capital letters near the beginning of the alphabet to denote events. If A is 
any event, we write its probability as P(A). Here are our probability facts in formal 
language. As you apply these rules, remember that they are just another form of 
intuitively true facts about long-run proportions.

Probability Rules 
Rule 1. The probability P(A) of any event A satisfies 0 # P(A) # 1.

Rule 2. If S is the sample space in a probability model, then P(S) 5 1.

Rule 3. Two events A and B are disjoint if they have no outcomes in common 
and so can never occur together. If A and B are disjoint,

P(A or B) 5 P(A) 1 P(B) 

This is the addition rule for disjoint events.

Rule 4. The complement of any event A is the event that A does not occur, 
written as Ac. The complement rule states that

P(Ac) 5 1 2 P(A) 

You may find it helpful to draw a picture to remind yourself of the meaning of 
complements and disjoint events. A picture like Figure 4.2 that shows the sample 
space S as a rectangular area and events as areas within S is called a Venn diagram. 
The events A and B in Figure 4.2 are disjoint because they do not overlap. As Figure 
4.3 shows, the complement Ac contains exactly the outcomes that are not in A.

Venn diagram

S

A B

FIGURE 4.2  Venn diagram 
showing disjoint events  
A and B.

A Ac

FIGURE 4.3  Venn diagram 
showing the complement Ac 
of an event A. The comple-
ment consists of all outcomes 
that are not in A.
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4.2  Probability Models    183

EXAMPLE 4.8  Favorite Vehicle Colors

What is your favorite color for a vehicle? Our preferences can be related to our 
personality, our moods, or particular objects. Here is a probability model for color 
preferences.2

Color White Black Silver Gray

Probability 0.24 0.19 0.16 0.15

Color Red Blue Brown Other

Probability 0.10 0.07 0.05 0.04

Each probability is between 0 and 1. The probabilities add to 1 because these 
outcomes together make up the sample space S. Our probability model corresponds 
to selecting a person at random and asking him or her about a favorite color. 

Let’s use the probability Rules 3 and 4 to find some probabilities for favorite 
vehicle colors.

EXAMPLE 4.9  Black or Silver?

What is the probability that a person’s favorite vehicle color is black or silver? If the 
favorite is black, it cannot be silver, so these two events are disjoint. Using Rule 3, we find 

P(black or silver) 5 P(black) 1 P(silver) 
5 0.19 1 0.16 5 0.35 

There is a 35% chance that a randomly selected person will choose black or silver 
as his or her favorite color. Suppose that we want to find the probability that the 
favorite color is not blue.

EXAMPLE 4.10  Use the Complement Rule

To solve this problem, we could use Rule 3 and add the probabilities for white, 
black, silver, gray, red, brown, and other. However, it is easier to use the probability 
that we have for blue and Rule 4. The event that the favorite is not blue is the com-
plement of the event that the favorite is blue. Using our notation for events, we have 

P(not blue) 5 1 2 P(blue)
5 1 2 0.07 5 0.93

We see that 93% of people have a favorite vehicle color that is not blue.

Apply your Knowledge

4.16  Red or brown.  Refer to Example 4.8, and find the probability that the 
favorite color is red or brown.

4.17  White, black, silver, gray, or red.  Refer to Example 4.8, and find the 
probability that the favorite color is white, black, silver, gray, or red using Rule 4.  
Explain why this calculation is easier than finding the answer using Rule 3.

4.18  Moving up.  An economist studying economic class mobility finds that the 
probability that the son of a father in the lowest economic class remains in that class 
is 0.46. What is the probability that the son moves to one of the higher classes?
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184	 CHAPTER 4  Probability: The Study of Randomness  

4.19  Occupational deaths.  Government data on job-related deaths assign a 
single occupation for each such death that occurs in the United States. The data 
on occupational deaths in 2012 show that the probability is 0.183 that a randomly 
chosen death was a construction worker and 0.039 that it was miner. What is 
the probability that a randomly chosen death was either construction related or 
mining related? What is the probability that the death was related to some other 
occupation?

4.20  Grading Canadian health care.  Annually, the Canadian Medical Asso-
ciation uses the marketing research firm Ipsos Canada to measure public opinion 
with respect to the Canadian health care system. Between July 17 and July 26 of 
2013, Ipsos Canada interviewed a random sample of 1000 adults.3 The people in 
the sample were asked to grade the overall quality of health care services as an 
A, B, C, or F, where an A is the highest grade and an F is a failing grade. Here 
are the results: 

Outcome Probability

A 0.30

B 0.45

C ?

F 0.06

These proportions are probabilities for choosing an adult at random and asking the 
person’s opinion on the Canadian health care system.

(a) What is the probability that a person chosen at random gives a grade of  
C? Why?
(b) If a “positive’’ grade is defined as A or B, what is the probability of a 
positive grade?

Assigning probabilities: Finite number of outcomes
The individual outcomes of a random phenomenon are always disjoint. So, the addi-
tion rule provides a way to assign probabilities to events with more than one out-
come: start with probabilities for individual outcomes and add to get probabilities 
for events. This idea works well when there are only a finite (fixed and limited) 
number of outcomes.

Probabilities in a Finite Sample Space 
Assign a probability to each individual outcome. These probabilities must be 
numbers between 0 and 1 and must have sum 1.

The probability of any event is the sum of the probabilities of the outcomes 
making up the event.

C
A

SE 4.1

Uncovering Fraud by Digital Analysis  What is the probability that the 
leftmost digit (“first digit’’) of a multidigit financial number is 9? Many of us 
would assume the probability to be 1/9. Surprisingly, this is often not the case 
for legitimately reported financial numbers. It is a striking fact that the first 
digits of numbers in legitimate records often follow a distribution known as 
Benford’s law. Here it is (note that the first digit can’t be 0): 

First digit 1 2 3 4 5 6 7 8 9 

Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 
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4.2  Probability Models    185

Of course, not all sets of data follow Benford’s law. Numbers that are assigned, 
such as Social Security numbers, do not. Nor do data with a fixed maximum, such 
as deductible contributions to individual retirement accounts (IRAs). Nor, of course, 
do random numbers. But given a remarkable number of financial-related data sets 
do closely obey Benford’s law, its role in auditing of financial and accounting state-
ments cannot be ignored.

EXAMPLE 4.11  Find Some Probabilities for Benford’s Law 

CASE 4.1 Consider the events 

A 5 {first digit is 5} 
B 5 {first digit is 3 or less} 

From the table of probabilities in Case 4.1, 

P(A) 5 P(5) 5 0.079 
P(B) 5 P(1) 1 P(2) 1 P(3) 

5 0.301 1 0.176 1 0.125 5 0.602 

Note that P(B) is not the same as the probability that a first digit is strictly less than 3.  
The probability P(3) that a first digit is 3 is included in “3 or less’’ but not in “less 
than 3.’’

Apply your Knowledge

4.21  Household space heating.  Draw a U.S. household at random, and record 
the primary source of energy to generate heat for warmth of the household using 
space-heating equipment. “At random’’ means that we give every household the 
same chance to be chosen. That is, we choose an SRS of size 1. Here is the 
distribution of primary sources for U.S. households:5

It is a regrettable fact that financial fraud permeates business and governmental 
sectors. In a recent 2014 study, the Association of Certified Fraud Examiners 
(ACFE) estimates that a typical organization loses 5% of revenues each year 
to fraud.4 ACFE projects a global fraud loss of nearly $4 trillion. Common 
examples of business fraud include:

•	 Corporate financial statement fraud: reporting fictitious revenues, under-
stating expenses, artificially inflating reported assets, and so on.

•	 Personal expense fraud: employee reimbursement claims for fictitious or 
inflated business expenses (for example, personal travel, meals, etc.).

•	 Billing fraud: submission of inflated invoices or invoices for fictitious goods 
or services to be paid to an employee-created shell company.

•	 Cash register fraud: false entries on a cash register for fraudulent removal 
of cash.

In all these situations, the individual(s) committing fraud are needing to 
“invent’’ fake financial entry numbers. In whatever means the invented num-
bers are created, the first digits of the fictitious numbers will most likely not 
follow the probabilities given by Benford’s law. As such, Benford’s law serves 
as an important “digital analysis’’ tool of auditors, typically CPA accountants, 
trained to look for fraudulent behavior.
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186	 CHAPTER 4  Probability: The Study of Randomness  

Primary source Probability

Natural gas 0.50

Electricity 0.35

Distillate fuel oil 0.06

Liquefied petroleum gases 0.05

Wood 0.02

Other 0.02

(a) Show that this is a legitimate probability model.
(b) What is the probability that a randomly chosen U.S. household uses natural 
gas or electricity as its primary source of energy for space heating?

CASE 4.1 4.22  Benford’s law.  Using the probabilities for Benford’s law, find 
the probability that a first digit is anything other than 4.

CASE 4.1 4.23  Use the addition rule.  Use the addition rule (page 182) with the 
probabilities for the events A and B from Example 4.11 to find the probability of 
A or B.

EXAMPLE 4.12  Find More Probabilities for Benford’s Law

CASE 4.1 Check that the probability of the event C that a first digit is even is 

P(C) 5 P(2) 1 P(4) 1 P(6) 1 P(8) 5 0.391

Consider again event B from Example 4.11 (page 185), which had an associated 
probability of 0.602. The probability

P(B or C) 5 P(1) 1 P(2) 1 P(3) 1 P(4) 1 P(6) 1 P(8) 5 0.817

is not the sum of P(B) and P(C) because events B and C are not disjoint. The out-
come of 2 is common to both events. Be careful to apply the addition rule only to 
disjoint events. In Section 4.3, we expand upon the addition rule given in this section 
to handle the case of nondisjoint events. 

Assigning probabilities: Equally likely outcomes
Assigning correct probabilities to individual outcomes often requires long observa-
tion of the random phenomenon. In some circumstances, however, we are willing 
to assume that individual outcomes are equally likely because of some balance in 
the phenomenon. Ordinary coins have a physical balance that should make heads 
and tails equally likely, for example, and the table of random digits comes from a 
deliberate randomization.

EXAMPLE 4.13  First Digits That Are Equally Likely

You might think that first digits in business records are distributed “at random’’ 
among the digits 1 to 9. The nine possible outcomes would then be equally likely. 
The sample space for a single digit is 

S 5 {1, 2, 3, 4, 5, 6, 7, 8, 9}

Because the total probability must be 1, the probability of each of the nine outcomes 
must be 1/9. That is, the assignment of probabilities to outcomes is 

First digit 1 2 3 4 5 6 7 8 9

Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
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4.2  Probability Models    187

The probability of the event B that a randomly chosen first digit is 3 or less is 

P(B) 5 P(1) 1 P(2) 1 P(3) 

5
1

9
1

1

9
1

1

9
5

3

9
5 0.333

Compare this with the Benford’s law probability in Example 4.11 (page 185). A 
crook who fakes data by using “random’’ digits will end up with too few first digits 
that are 3 or less. 

In Example 4.13, all outcomes have the same probability. Because there are nine 
equally likely outcomes, each must have probability 1/9. Because exactly three of 
the nine equally likely outcomes are 3 or less, the probability of this event is 3/9. In 
the special situation in which all outcomes are equally likely, we have a simple rule 
for assigning probabilities to events.

Equally Likely Outcomes 
If a random phenomenon has k possible outcomes, all equally likely, then each 
individual outcome has probability 1/k. The probability of any event A is

PsAd 5
count of outcomes in A

count of outcomes in S

5
count of outcomes in A

k

Most random phenomena do not have equally likely outcomes, so the general 
rule for finite sample spaces (page 184) is more important than the special rule for 
equally likely outcomes.

Apply your Knowledge

4.24  Possible outcomes for rolling a die.  A die has six sides with one to six 
spots on the sides. Give the probability distribution for the six possible outcomes 
that can result when a fair die is rolled.

Independence and the multiplication rule
Rule 3, the addition rule for disjoint events, describes the probability that one or 
the other of two events A and B occurs when A and B cannot occur together. Now 
we describe the probability that both events A and B occur, again only in a special 
situation. More general rules appear in Section 4.3.

Suppose that you toss a balanced coin twice. You are counting heads, so two 
events of interest are 

A 5 {first toss is a head}
B 5 {second toss is a head} 

The events A and B are not disjoint. They occur together whenever both tosses give 
heads. We want to compute the probability of the event {A and B} that both tosses 
are heads. The Venn diagram in Figure 4.4 illustrates the event {A and B} as the 
overlapping area that is common to both A and B.

The coin tossing of Buffon, Pearson, and Kerrich described in Example 4.2 
makes us willing to assign probability 1/2 to a head when we toss a coin. So, 

P(A) 5 0.5
P(B) 5 0.5
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188	 CHAPTER 4  Probability: The Study of Randomness  

What is P(A and B)? Our common sense says that it is 1/4. The first coin will give 
a head half the time and then the second will give a head on half of those trials, so 
both coins will give heads on 1/2 3 1/2 5 1/4 of all trials in the long run. This rea-
soning assumes that the second coin still has probability 1/2 of a head after the first 
has given a head. This is true—we can verify it by tossing two coins many times and 
observing the proportion of heads on the second toss after the first toss has produced 
a head. We say that the events “head on the first toss’’ and “head on the second toss’’ 
are independent. Here is our final probability rule.

Multiplication Rule for Independent Events
Rule 5. Two events A and B are independent if knowing that one occurs does 
not change the probability that the other occurs. If A and B are independent,

P(A and B) 5 P(A)P(B)

This is the multiplication rule for independent events.

Our definition of independence is rather informal. We make this informal idea pre-
cise in Section 4.3. In practice, though, we rarely need a precise definition of indepen-
dence because independence is usually assumed as part of a probability model when we 
want to describe random phenomena that seem to be physically unrelated to each other.

EXAMPLE 4.14  Determining Independence Using the  
Multiplication Rule

Consider a manufacturer that uses two suppliers for supplying an identical part 
that enters the production line. Sixty percent of the parts come from one supplier, 
while the remaining 40% come from the other supplier. Internal quality audits find 
that there is a 1% chance that a randomly chosen part from the production line is 
defective. External supplier audits reveal that two parts per 1000 are defective from 
Supplier 1. Are the events of a part coming from a particular supplier—say, Supplier 
1—and a part being defective independent?

Define the two events as follows: 

S1 5 A randomly chosen part comes from Supplier 1
D 5 A randomly chosen part is defective

We have P(S1) 5 0.60 and P(D) 5 0.01. The product of these probabilities is 

P(S1)P(D) 5 (0.60)(0.01) 5 0.006

However, supplier audits of Supplier 1 indicate that P(S1 and D) 5 0.002. Given 
that P(S1 and D) ≠ P(S1)P(D), we conclude that the supplier and defective part 
events are not independent. 

The multiplication rule P(A and B) 5 P(A)P(B) holds if A and B are indepen-
dent but not otherwise. The addition rule P(A or B) 5 P(A) 1 P(B) holds if A and B 

A and B
A B

SFIGURE 4.4  Venn diagram 
showing the events A and 
B that are not disjoint. The 
event {A and B} consists of 
outcomes common to A and B.
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4.2  Probability Models    189

are disjoint but not otherwise. Resist the temptation to use these simple rules when 
the circumstances that justify them are not present. You must also be certain not to 
confuse disjointness and independence. Disjoint events cannot be independent. If 
A and B are disjoint, then the fact that A occurs tells us that B cannot occur—look 
back at Figure 4.2 (page 182). Thus, disjoint events are not independent. Unlike 
disjointness, picturing independence with a Venn diagram is not obvious. A mosaic 
plot introduced in Chapter 2 provides a better way to visualize independence or lack 
of it. We will see more examples of mosaic plots in Chapter 9.

Apply your Knowledge

4.25  High school rank.  Select a first-year college student at random and ask 
what his or her academic rank was in high school. Here are the probabilities, 
based on proportions from a large sample survey of first-year students: 

Rank Top 20% Second 20% Third 20% Fourth 20% Lowest 20%

Probability 0.41 0.23 0.29 0.06 0.01

(a) Choose two first-year college students at random. Why is it reasonable to 
assume that their high school ranks are independent?
(b) What is the probability that both were in the top 20% of their high school 
classes?
(c) What is the probability that the first was in the top 20% and the second was 
in the lowest 20%?

4.26  College-educated part-time workers?  For people aged 25 years or older, 
government data show that 34% of employed people have at least four years of 
college and that 20% of employed people work part-time. Can you conclude that 
because (0.34)(0.20) 5 0.068, about 6.8% of employed people aged 25 years or 
older are college-educated part-time workers? Explain your answer.

Applying the probability rules
If two events A and B are independent, then their complements Ac and Bc are also 
independent and Ac is independent of B. Suppose, for example, that 75% of all reg-
istered voters in a suburban district are Republicans. If an opinion poll interviews 
two voters chosen independently, the probability that the first is a Republican and 
the second is not a Republican is (0.75)(1 2 0.75) 5 0.1875.

The multiplication rule also extends to collections of more than two events, 
provided that all are independent. Independence of events A, B, and C means that no 
information about any one or any two can change the probability of the remaining 
events. The formal definition is a bit messy. Fortunately, independence is usually 
assumed in setting up a probability model. We can then use the multiplication rule 
freely.

By combining the rules we have learned, we can compute probabilities for 
rather complex events. Here is an example.

EXAMPLE 4.15  False Positives in Job Drug Testing

Job applicants in both the public and the private sector are often finding that preem-
ployment drug testing is a requirement. The Society for Human Resource Manage-
ment found that 71% of larger organizations (25,000 1 employees) require drug 
testing of new job applicants and that 44% of these organizations randomly test hired 
employees.6 From an applicant’s or employee’s perspective, one primary concern 

reminder
mosaic plot, p. 109
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190	 CHAPTER 4  Probability: The Study of Randomness  

with drug testing is a “false-positive’’ result, that is, an indication of drug use when 
the individual has indeed not used drugs. If a job applicant tests positive, some 
companies allow the applicant to pay for a retest. For existing employees, a posi-
tive result is sometimes followed up with a more sophisticated and expensive test. 
Beyond cost considerations, there are issues of defamation, wrongful discharge, and 
emotional distress.

The enzyme multiplied immunoassay technique, or EMIT, applied to urine sam-
ples is one of the most common tests for illegal drugs because it is fast and inexpen-
sive. Applied to people who are free of illegal drugs, EMIT has been reported to have 
false-positive rates ranging from 0.2% to 2.5%. If 150 employees are tested and all 
150 are free of illegal drugs, what is the probability that at least one false positive 
will occur, assuming a 0.2% false positive rate?

It is reasonable to assume as part of the probability model that the test results for 
different individuals are independent. The probability that the test is positive for a 
single person is 0.2%, or 0.002, so the probability of a negative result is 1 2 0.002 5 
0.998 by the complement rule. The probability of at least one false-positive among 
the 150 people tested is, therefore,

P(at least 1 positive) 5 1 2 P(no positives)
5 1 2 P(150 negatives)
5 1 2 0.998150

5 1 2 0.741 5 0.259 

The probability is greater than 1/4 that at least one of the 150 people will test posi-
tive for illegal drugs even though no one has taken such drugs. 

Apply your Knowledge

4.27  Misleading résumés.  For more than two decades, Jude Werra, president of 
an executive recruiting firm, has tracked executive résumés to determine the rate 
of misrepresenting education credentials and/or employment information. On a 
biannual basis, Werra reports a now nationally recognized statistic known as the 
“Liars Index.’’ In 2013, Werra reported that 18.4% of executive job applicants 
lied on their résumés.7

(a) Suppose five résumés are randomly selected from an executive job appli-
cant pool. What is the probability that all of the résumés are truthful? 
(b) What is the probability that at least one of five randomly selected résumés 
has a misrepresentation?

4.28  Failing to detect drug use.  In Example 4.15, we considered how drug tests 
can indicate illegal drug use when no illegal drugs were actually used. Consider 
now another type of false test result. Suppose an employee is suspected of hav-
ing used an illegal drug and is given two tests that operate independently of each 
other. Test A has probability 0.9 of being positive if the illegal drug has been 
used. Test B has probability 0.8 of being positive if the illegal drug has been 
used. What is the probability that neither test is positive if the illegal drug has 
been used?

4.29  Bright lights?  A string of holiday lights contains 20 lights. The lights are 
wired in series, so that if any light fails the whole string will go dark. Each light 
has probability 0.02 of failing during a three-year period. The lights fail indepen-
dently of each other. What is the probability that the string of lights will remain 
bright for a three-year period?
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SECTION 4.2  Summary

•	 A probability model for a random phenomenon consists of a sample space S and 
an assignment of probabilities P.

•	 The sample space S is the set of all possible outcomes of the random phenom-
enon. Sets of outcomes are called events. P assigns a number P(A) to an event A 
as its probability.

•	 The complement Ac of an event A consists of exactly the outcomes that are not in A.

•	 Events A and B are disjoint if they have no outcomes in common.

•	 Events A and B are independent if knowing that one event occurs does not 
change the probability we would assign to the other event.

•	 Any assignment of probability must obey the rules that state the basic properties 
of probability: 

Rule 1.  0 # P(A) # 1 for any event A. 

Rule 2.  P(S) 5 1. 

Rule 3.  Addition rule: If events A and B are disjoint, then P(A or B) 5 P(A) 1 P(B).

Rule 4.  Complement rule: For any event A, P(Ac) 5 1 2 P(A).

Rule 5.  Multiplication rule: If events A and B are independent, then P(A and B) 5  
P(A)P(B). 

SECTION 4.2  Exercises 

For Exercises 4.14 and 4.15, see pages 180–181;  
for 4.16 to 4.20, see pages 183–184; for 4.21 to 4.23, 
see pages 185–186; for 4.24, see page 187; for 4.25 
and 4.26, see page 189; and for 4.27 to 4.29,  
see page 190.

4.30  Support for casino in Toronto.  In an effort 
to seek the public’s input on the establishment of a 
casino, Toronto’s city council enlisted an independent 
analytics research company to conduct a public survey. 
A random sample of 902 adult Toronto residents were 
asked if they support the casino in Toronto.8 Here are 
the results:

Response Strongly 
support

Somewhat 
support

Mixed 
feelings

Probability 0.16 0.26 ? 

Response Somewhat 
oppose

Strongly 
oppose

Don’t 
know

Probability 0.14 0.36 0.01 

(a) What probability should replace “?’’ in the distribution? 
(b) What is the probability that a randomly chosen adult 
Toronto resident supports (strongly or somewhat) a casino?

4.31  Confidence in institutions.  A Gallup Poll (June 
1–4, 2013) interviewed a random sample of 1529 
adults (18 years or older). The people in the sample 
were asked about their level of confidence in a variety 
of institutions in the United States. Here are the results 
for small and big businesses:9

Great 
deal

Quite 
a lot Some

Very 
little None

No 
opinion

Small 
business 

0.29 0.36 0.27 0.07 0.00 0.01 

Big 
business 

0.09 0.13 0.43 0.31 0.02 0.02 

(a) What is the probability that a randomly chosen 
person has either no opinion, no confidence, or very 
little confidence in small businesses? Find the similar 
probability for big businesses.
(b) Using your answer from part (a), determine the 
probability that a randomly chosen person has at least 
some confidence in small businesses. Again based on 
part (a), find the similar probability for big businesses.

4.32  Demographics—language.  Canada has two 
official languages, English and French. Choose a 
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Canadian at random and ask, “What is your mother 
tongue?’’ Here is the distribution of responses, com-
bining many separate languages from the broad Asian/
Pacific region:10

Language English French Sino-Tibetan Other 

Probability 0.581 0.217 0.033 ? 

(a) What probability should replace “?’’ in the distribution?
(b) Only English and French are considered official 
languages. What is the probability that a randomly 
chosen Canadian’s mother tongue is not an official 
language?

4.33  Online health information.  Based on a random 
sample of 1066 adults (18 years or older), a Harris 
Poll (July 13–18, 2010) estimates that 175 million 
U.S. adults have gone online for health information. 
Such individuals have been labeled as “cyberchon-
driacs.’’ Cyberchondriacs in the sample were asked 
about the success of their online search for informa-
tion about health topics. Here is the distribution of 
responses:11

Very 
successful 

Somewhat 
successful 

Neither successful 
nor unsuccessful 

Probability 0.41 0.45 0.04 

Somewhat 
unsuccessful

Very 
unsuccessful 

Decline 
to answer

Probability 0.05 0.03 0.02 

(a) Show that this is a legitimate probability distribution.
(b) What is the probability that a randomly chosen 
cyberchondriac feels that his or her search for health 
information was somewhat or very successful?

4.34  World Internet usage.  Approximately 40.4% 
of the world’s population uses the Internet (as of July 
2014).12 Furthermore, a randomly chosen Internet user 
has the following probabilities of being from the given 
country of the world: 

Region China U.S. India Japan

Probability 0.2197 0.0958 0.0833 0.0374

(a) What is the probability that a randomly chosen 
Internet user does not live in one of the four countries 
listed in this table? 
(b) What is the probability that a randomly chosen 
Internet user does not live in the United States? 
(b) At least what proportion of Internet users are from 
Asia?

4.35  Modes of transportation.  Governments (local 
and national) find it important to gather data on modes 

of transportation for commercial and workplace move-
ment. Such information is useful for policymaking as 
it pertains to infrastructure (like roads and railways), 
urban development, energy use, and pollution. Based 
on 2011 Canadian and 2012 U.S. government data, 
here are the distributions of the primary means of 
transportation to work for employees working outside 
the home:13

Car (self 
or pool)

Public 
transportation

Bicycle or 
motorcycle Walk Other 

Canada ? 0.120 0.013 0.057 0.014 

U.S. ? 0.052 0.006 0.029 0.013 

(a) What is the probability that a randomly chosen 
Canadian employee who works outside the home uses 
an automobile? What is the probability that a randomly 
chosen U.S. employee who works outside the home uses 
an automobile?
(b) Transportation systems primarily based on the 
automobile are regarded as unsustainable because of 
the excessive energy consumption and the effects on 
the health of populations. The Canadian government 
includes public transit, walking, and cycles as 
“sustainable’’ modes of transportation. For both 
countries, determine the probability that a randomly 
chosen employee who works outside home uses 
sustainable transportation. How do you assess the 
relative status of sustainable transportation for these two 
countries?

4.36  Car colors.  Choose a new car or light truck at 
random and note its color. Here are the probabilities 
of the most popular colors for cars purchased in South 
America in 2012:14

Color Silver White Black Gray Red Brown 

Probability 0.29 0.21 0.19 0.13 0.09 0.05 

(a) What is the probability that a randomly chosen car is 
either silver or white? 
(b) In North America, the probability of a new car being 
blue is 0.07. What can you say about the probability of a 
new car in South America being blue?

4.37  Land in Iowa.  Choose an acre of land in Iowa at 
random. The probability is 0.92 that it is farmland and 
0.01 that it is forest.
(a) What is the probability that the acre chosen is not 
farmland?
(b) What is the probability that it is either farmland or 
forest?
(c) What is the probability that a randomly chosen acre 
in Iowa is something other than farmland or forest?
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4.38  Stock market movements.  You watch the 
price of the Dow Jones Industrial Index for four days. 
Give a sample space for each of the following random 
phenomena. 
(a) You record the sequence of up-days and down-days.
(b) You record the number of up-days.

4.39  Colors of M&M’S.  The colors of candies such as 
M&M’S are carefully chosen to match consumer  
preferences. The color of an M&M drawn at random 
from a bag has a probability distribution determined by 
the proportions of colors among all M&M’S of that type.
(a) Here is the distribution for plain M&M’S: 

Color Blue Orange Green Brown Yellow Red

Probability 0.24 0.20 0.16 0.14 0.14 ? 

What must be the probability of drawing a red candy? 
(b) What is the probability that a plain M&M is any of 
orange, green, or yellow?

4.40  Almond M&M’S.  Exercise 4.39 gives the  
probabilities that an M&M candy is each of blue, 
orange, green, brown, yellow, and red. If “Almond’’ 
M&M’S are equally likely to be any of these  
colors, what is the probability of drawing a blue 
Almond M&M?

4.41  Legitimate probabilities?  In each of the  
following situations, state whether or not the given 
assignment of probabilities to individual outcomes  
is legitimate—that is, satisfies the rules of probability. 
If not, give specific reasons for your answer.
(a) When a coin is spun, P(H) 5 0.55 and P(T) 5 0.45.
(b) When a coin flipped twice, P(HH) 5 0.4, P(HT) 5 0.4,  
P(TH) 5 0.4, and P(TT) 5 0.4.
(c) Plain M&M’S have not always had the mixture of 
colors given in Exercise 4.39. In the past there were no 
red candies and no blue candies. Tan had probability 
0.10, and the other four colors had the same probabilities 
that are given in Exercise 4.39.

4.42  Who goes to Paris?  Abby, Deborah, Sam, 
Tonya, and Roberto work in a firm’s public relations 
office. Their employer must choose two of them to 
attend a conference in Paris. To avoid unfairness, the 
choice will be made by drawing two names from a hat. 
(This is an SRS of size 2.)
(a) Write down all possible choices of two of the five 
names. This is the sample space.
(b) The random drawing makes all choices equally likely. 
What is the probability of each choice?
(c) What is the probability that Tonya is chosen?
(d) What is the probability that neither of the two men 
(Sam and Roberto) is chosen?

4.43  Equally likely events.  For each of the following 
situations, explain why you think that the events are 
equally likely or not.  
(a) The outcome of the next tennis match for Victoria 
Azarenka is either a win or a loss. (You might want 
to check the Internet for information about this tennis 
player.) 
(b) You draw a king or a two from a shuffled deck of  
52 cards. 
(c) You are observing turns at an intersection. You 
classify each turn as a right turn or a left turn. 
(d) For college basketball games, you record the times 
that the home team wins and the number of times that the 
home team loses.

4.44  Using Internet sources.  Internet sites often  
vanish or move, so references to them can’t be  
followed. In fact, 13% of Internet sites referenced in 
major scientific journals are lost within two years after 
publication.
(a) If a paper contains seven Internet references, what 
is the probability that all seven are still good two years 
later?
(b) What specific assumptions did you make in order to 
calculate this probability?

4.45  Everyone gets audited.  Wallen Accounting 
Services specializes in tax preparation for individual 
tax returns. Data collected from past records reveals 
that 9% of the returns prepared by Wallen have been 
selected for audit by the Internal Revenue Service. 
Today, Wallen has six new customers. Assume the 
chances of these six customers being audited are 
independent.
(a) What is the probability that all six new customers will 
be selected for audit?
(b) What is the probability that none of the six new 
customers will be selected for audit?
(c) What is the probability that exactly one of the six new 
customers will be selected for audit?

4.46  Hiring strategy.  A chief executive officer (CEO) 
has resources to hire one vice president or three man-
agers. He believes that he has probability 0.6 of suc-
cessfully recruiting the vice president candidate and 
probability 0.8 of successfully recruiting each of the 
manager candidates. The three candidates for manager 
will make their decisions independently of each other. 
The CEO must successfully recruit either the vice 
president or all three managers to consider his hiring 
strategy a success. Which strategy should he choose?

4.47  A random walk on Wall Street?  The “random 
walk’’ theory of securities prices holds that price 
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194	 CHAPTER 4  Probability: The Study of Randomness  

movements in disjoint time periods are independent of 
each other. Suppose that we record only whether the 
price is up or down each year and that the probability 
that our portfolio rises in price in any one year is 0.65. 
(This probability is approximately correct for a port-
folio containing equal dollar amounts of all common 
stocks listed on the New York Stock Exchange.)
(a) What is the probability that our portfolio goes up for 
three consecutive years?
(b) If you know that the portfolio has risen in price  
two years in a row, what probability do you assign to the 
event that it will go down next year?
(c) What is the probability that the portfolio’s value 
moves in the same direction in both of the next two 
years?

4.48  The multiplication rule for independent 
events.  The probability that a randomly selected  
person prefers the vehicle color white is 0.24. Can you 
apply the multiplication rule for independent events 
in the situations described in parts (a) and (b)? If your 
answer is Yes, apply the rule. 
(a) Two people are chosen at random from the 
population. What is the probability that both prefer 
white? 
(b) Two people who are sisters are chosen. What is the 
probability that both prefer white? 
(c) Write a short summary about the multiplication rule 
for independent events using your answers to parts (a) 
and (b) to illustrate the basic idea.

4.49  What’s wrong?  In each of the following scenar-
ios, there is something wrong. Describe what is wrong 
and give a reason for your answer. 
(a) If two events are disjoint, we can multiply their 
probabilities to determine the probability that they will 
both occur. 

(b) If the probability of A is 0.6 and the probability of B 
is 0.5, the probability of both A and B happening is 1.1.
(c) If the probability of A is 0.35, then the probability of 
the complement of A is −0.35. 

4.50  What’s wrong?  In each of the following scenar-
ios, there is something wrong. Describe what is wrong 
and give a reason for your answer. 
(a) If the sample space consists of two outcomes, then 
each outcome has probability 0.5. 
(b) If we select a digit at random, then the probability of 
selecting a 2 is 0.2. 
(c) If the probability of A is 0.2, the probability of B is 
0.3, and the probability of A and B is 0.5, then A and B 
are independent.

4.51  Playing the lottery.  An instant lottery game 
gives you probability 0.02 of winning on any one  
play. Plays are independent of each other. If you play 
five times, what is the probability that you win at  
least once?

4.52  Axioms of probability.  Show that any assign-
ment of probabilities to events that obeys Rules 2 and 3  
on page 182 automatically obeys the complement  
rule (Rule 4). This implies that a mathematical  
treatment of probability can start from just Rules 1, 2,  
and 3. These rules are sometimes called axioms of 
probability.

4.53  Independence of complements.  Show that if 
events A and B obey the multiplication rule, P(A and 
B) 5 P(A)P(B), then A and the complement Bc of B 
also obey the multiplication rule, P(A and Bc) 5 P(A)
P(Bc). That is, if events A and B are independent, then 
A and Bc are also independent. (Hint: Start by drawing 
a Venn diagram and noticing that the events “A and B’’ 
and “A and Bc’’ are disjoint.)

4.3 General Probability Rules
In the previous section, we met and used five basic rules of probability (page 191). 
To lay the groundwork for probability, we considered simplified settings such as 
dealing with only one or two events or the making of assumptions that the events 
are disjoint or independent. In this section, we learn more general laws that govern 
the assignment of probabilities. We learn that these more general laws of probability 
allows us to apply probability models to more complex random phenomena.

General addition rules
Probability has the property that if A and B are disjoint events, then P(A or B) 5  
P(A) 1 P(B). What if there are more than two events or the events are not disjoint? 
These circumstances are covered by more general addition rules for probability.
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4.3  General Probability Rules    195

Union
The union of any collection of events is the event that at least one of the 
collection occurs. 

For two events A and B, the union is the event {A or B} that A or B or both occur. 
From the addition rule for two disjoint events we can obtain rules for more general 
unions. Suppose first that we have several events—say A, B, and C—that are disjoint 
in pairs. That is, no two can occur simultaneously. The Venn diagram in Figure 4.5 
illustrates three disjoint events. The addition rule for two disjoint events extends to 
the following law.

Addition Rule for Disjoint Events
If events A, B, and C are disjoint in the sense that no two have any outcomes in 
common, then 

P(A or B or C) 5 P(A) 1 P(B) 1 P(C) 

This rule extends to any number of disjoint events.

EXAMPLE 4.16  Disjoint Events

Generate a random integer in the range of 10 to 59. What is the probability that the 
10’s digit will be odd? The event that the 10’s digit is odd is the union of three dis-
joint events. These events are 

A 5 {10, 11, . . . , 19}
B 5 {30, 31, . . . , 39}
C 5 {50, 51, . . . , 59}

In each of these events, there are 10 outcomes out of the 50 possible outcomes. 
This implies P(A) 5 P(B) 5 P(C) 5 0.2. As a result, the probability that the 10’s 
digit is odd is 

P(A or B or C) 5 P(A) 1 P(B) 1 P(C)
5 0.2 1 0.2 1 0.2 5 0.6

Apply your Knowledge

4.54  Probability that sum of dice is a multiple of 4.  Suppose you roll a pair 
of dice and you record the sum of the dice. What is the probability that the sum 
is a multiple of 4?

If events A and B are not disjoint, they can occur simultaneously. The probability 
of their union is then less than the sum of their probabilities. As Figure 4.6 suggests, 
the outcomes common to both are counted twice when we add probabilities, so we 
must subtract this probability once. Here is the addition rule for the union of any 
two events, disjoint or not.

S

A

B

C

FIGURE 4.5  The addition rule 
for disjoint events: P(A or B  
or C ) 5 P(A) 1 P(B) 1 P(C ) when 
events A, B, and C are disjoint.
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196	 CHAPTER 4  Probability: The Study of Randomness  

General Addition Rule for Unions of Two Events
For any two events A and B, 

P(A or B) 5 P(A) 1 P(B) 2 P(A and B)

If A and B are disjoint, the event {A and B} that both occur has no outcomes in 
it. This empty event is the complement of the sample space S and must have prob-
ability 0. So the general addition rule includes Rule 3, the addition rule for disjoint 
events.

EXAMPLE 4.17  Making Partner

Deborah and Matthew are anxiously awaiting word on whether they have been made 
partners of their law firm. Deborah guesses that her probability of making partner is 
0.7 and that Matthew’s is 0.5. (These are personal probabilities reflecting Deborah’s 
assessment of chance.) This assignment of probabilities does not give us enough 
information to compute the probability that at least one of the two is promoted. In 
particular, adding the individual probabilities of promotion gives the impossible 
result 1.2. If Deborah also guesses that the probability that both she and Matthew 
are made partners is 0.3, then by the general addition rule 

P(at least one is promoted) 5 0.7 1 0.5 2 0.3 5 0.9

The probability that neither is promoted is then 0.1 by the complement rule. 

Venn diagrams are a great help in finding probabilities because you can just 
think of adding and subtracting areas. Figure 4.7 shows some events and their prob-
abilities for Example 4.17. What is the probability that Deborah is promoted and 
Matthew is not?

The Venn diagram shows that this is the probability that Deborah is promoted 
minus the probability that both are promoted, 0.7 2 0.3 5 0.4. Similarly, the prob-
ability that Matthew is promoted and Deborah is not is 0.5 2 0.3 5 0.2. The four 
probabilities that appear in the figure add to 1 because they refer to four disjoint 
events that make up the entire sample space.

S

A and B
A B

FIGURE 4.6  The general addi-
tion rule: P(A or B) 5 P(A) 1  
P(B) 2 P(A and B) for any 
events A and B.

M and not D
0.2

D and not M
0.4

D and M
0.3

Neither D nor M
0.1

D = Deborah is made partner
M = Matthew is made partner

FIGURE 4.7  Venn diagram and 
probabilities, Example 4.17.
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Apply your Knowledge

4.55  Probability that sum of dice is even or greater than 8.  Suppose you roll 
a pair of dice and record the sum of the dice. What is the probability that the sum 
is even or greater than 8?

Conditional probability
The probability we assign to an event can change if we know that some other event 
has occurred. This idea is the key to many applications of probability. Let’s first 
illustrate this idea with labor-related statistics.

Each month the Bureau of Labor Statistics (BLS) announces a variety of statis-
tics on employment status in the United States. Employment statistics are important 
gauges of the economy as a whole. To understand the reported statistics, we need 
to understand how the government defines “labor force.’’ The labor force includes 
all people who are either currently employed or who are jobless but are looking for 
jobs and are available for work. The latter group is viewed as unemployed. People 
who have no job and are not actively looking for one are not considered to be in the 
labor force. There are a variety of reasons for people not to be in the labor force, 
including being retired, going to school, having certain disabilities, or being too 
discouraged to look for a job.

EXAMPLE 4.18  Labor Rates

Averaged over the year 2013, the following table contains counts (in thousands) 
of persons aged 16 and older in the civilian population, classified by gender and 
employment status:15

Gender Employed Unemployed Not in labor force Civilian population 

Men 76,353 6,314 35,889 118,556 

Women 67,577 5,146 54,401 127,124 

Total 143,930 11,460 90,290 245,680 

The BLS defines the total labor force as the sum of the counts on employed and 
unemployed. In turn, the total labor force count plus the count of those not in the 
labor force equals the total civilian population. Depending on the base (total labor 
force or civilian population), different rates can be computed. For example, the 
number of people unemployed divided by the total labor force defines the unem-
ployment rate, while the total labor force divided by the civilian population defines 
labor participation rate.

Randomly choose a person aged 16 or older from the civilian population. What 
is the probability that person is defined as labor participating? Because “choose  
at random’’ gives all 245,680,000 such persons the same chance, the probability is 
just the proportion that are participating. In thousands, 

Psparticipatingd 5
143,930 1 11,460

245,680
5 0.632

This calculation does not assume anything about the gender of the person. Sup-
pose now we are told that the person chosen is female. The probability that the 
person participates, given the information that the person is female, is 

Psparticipating u femaled 5
67,577 1 5,146

127,124
5 0.572
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198	 CHAPTER 4  Probability: The Study of Randomness  

The new notation P(B u A) is a conditional probability. That is, it gives the probability 
of one event (person is labor participating) under the condition that we know another event 
(person is female). You can read the bar u as “given the information that.’’

Apply your Knowledge

4.56  Men labor participating.  Refer to Example 4.18. What is the probability 
that a person is labor participant given the person is male?

Do not confuse the probabilities of P(B u A) and P(A and B). They are generally 
not equal. Consider, for example, that the computed probability of 0.572 from Example 
4.18 is not the probability that a randomly selected person from the civilian population 
is female and labor participating. Even though these probabilities are different, they are 
connected in a special way. Find first the proportion of the civilian population who are 
women. Then, out of the female population, find the proportion who are labor partici-
pating. Multiply the two proportions. The actual proportions from Example 4.18 are 

P(female and participating) 5 P(female) 3 P(participating u female)

5 1127,124

245,6802 s0.572d 5 0.296

We can check if this is correct by computing the probability directly as follows: 

Psfemale and participatingd 5
67,577 1 5,146

245,680
5 0.296

We have just discovered the general multiplication rule of probability.

Multiplication Rule 
The probability that both of two events A and B happen together can be found by 

P(A and B) 5 P(A)P(B u A)

Here P(B u A) is the conditional probability that B occurs, given the information  
that A occurs.

EXAMPLE 4.19  Downloading Music from the Internet

The multiplication rule is just common sense made formal. For example, suppose that 
29% of Internet users download music files, and 67% of downloaders say they don’t 
care if the music is copyrighted. So the percent of Internet users who download music 
(event A) and don’t care about copyright (event B) is 67% of the 29% who download, or 

(0.67)(0.29) 5 0.1943 5 19.43%

The multiplication rule expresses this as 

P(A and B) 5 P(A) 3 P(B u A)
5 (0.29)(0.67) 5 0.1943

Apply your Knowledge

4.57  Focus group probabilities.  A focus group of 15 consumers has been 
selected to view a new TV commercial. Even though all of the participants will 
provide their opinion, two members of the focus group will be randomly selected 
and asked to answer even more detailed questions about the commercial. The 
group contains seven men and eight women. What is the probability that the two 
chosen to answer questions will both be women?

conditional probability
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4.3  General Probability Rules    199

4.58  Buying from Japan.  Functional Robotics Corporation buys electrical con-
trollers from a Japanese supplier. The company’s treasurer thinks that there is 
probability 0.4 that the dollar will fall in value against the Japanese yen in the 
next month. The treasurer also believes that if the dollar falls, there is probability 
0.8 that the supplier will demand renegotiation of the contract. What probabil-
ity has the treasurer assigned to the event that the dollar falls and the supplier 
demands renegotiation?

If P(A) and P(A and B) are given, we can rearrange the multiplication rule to 
produce a definition of the conditional probability P(B u A) in terms of unconditional 
probabilities.

Definition of Conditional Probability
When P(A) . 0, the conditional probability of B given A is 

PsB u Ad 5
PsA and Bd

PsAd

Be sure to keep in mind the distinct roles in P(B u A) of the event B whose prob-
ability we are computing and the event A that represents the information we are 
given. The conditional probability P(B u A) makes no sense if the event A can never 
occur, so we require that P(A) . 0 whenever we talk about P(B u A).

EXAMPLE 4.20  College Students

Here is the distribution of U.S. college students classified by age and full-time or 
part-time status: 

Age (years) Full-time Part-time 

15 to 19 0.21 0.02 

20 to 24 0.32 0.07 

25 to 39 0.10 0.10 

30 and over 0.05 0.13 

Let’s compute the probability that a student is aged 15 to 19, given that the 
student is full-time. We know that the probability that a student is full-time and 
aged 15 to 19 is 0.21 from the table of probabilities. But what we want here is a 
conditional probability, given that a student is full-time. Rather than asking about 
age among all students, we restrict our attention to the subpopulation of students 
who are full-time. Let 

A 5 the student is a full-time student
B 5 the student is between 15 and 19 years of age 

Our formula is 

PsB u Ad 5
PsA and Bd

PsAd

We read P(A and B) 5 0.21 from the table as mentioned previously. What 
about P(A)? This is the probability that a student is full-time. Notice that there are 
four groups of students in our table that fit this description. To find the probability 
needed, we add the entries: 

P(A) 5 0.21 1 0.32 1 0.10 1 0.05 5 0.68 
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200	 CHAPTER 4  Probability: The Study of Randomness  

We are now ready to complete the calculation of the conditional probability: 

PsB u Ad 5
PsA and Bd

PsAd

5
0.21

0.68

5 0.31

The probability that a student is 15 to 19 years of age, given that the student is full-
time, is 0.31. 

Here is another way to give the information in the last sentence of this example: 
31% of full-time college students are 15 to 19 years old. Which way do you prefer?

Apply your Knowledge

4.59  What rule did we use?  In Example 4.20, we calculated P(A). What rule 
did we use for this calculation? Explain why this rule applies in this setting.

4.60  Find the conditional probability.  Refer to Example 4.20. What is the 
probability that a student is part-time, given that the student is 15 to 19 years 
old? Explain in your own words the difference between this calculation and the 
one that we did in Example 4.20.

General multiplication rules
The definition of conditional probability reminds us that, in principle, all prob-
abilities—including conditional probabilities—can be found from the assignment 
of probabilities to events that describe random phenomena. More often, however, 
conditional probabilities are part of the information given to us in a probability 
model, and the multiplication rule is used to compute P(A and B). This rule extends 
to more than two events.

The union of a collection of events is the event that any of them occur. Here is 
the corresponding term for the event that all of them occur.

Intersection
The intersection of any collection of events is the event that all the events 
occur. 

To extend the multiplication rule to the probability that all of several events 
occur, the key is to condition each event on the occurrence of all the preceding 
events. For example, the intersection of three events A, B, and C has probability 

P(A and B and C) 5 P(A)P(B u A)P(C u A and B)

EXAMPLE 4.21  Career in Big Business: NFL

Worldwide, the sports industry has become synonymous with big business. It has 
been estimated by the United Nations that sports account for nearly 3% of global 
economic activity. The most profitable sport in the world is professional football 
under the management of the National Football League (NFL).16 With multi-mil-
lion-dollar signing contracts, the economic appeal of pursuing a career as a profes-
sional sports athlete is unquestionably strong. But what are the realities? Only 6.5% 
of high school football players go on to play at the college level. Of these, only 1.2% 
will play in the NFL.17 About 40% of the NFL players have a career of more than 
three years. Define these events for the sport of football:
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4.3  General Probability Rules    201

A 5 {competes in college} 
B 5 {competes in the NFL} 
C 5 {has an NFL career longer than 3 years} 

What is the probability that a high school football player competes in college 
and then goes on to have an NFL career of more than three years? We know that 

P(A) 5 0.065
P(B u A) 5 0.012

P(C u A and B) 5 0.4

The probability we want is, therefore, 

P(A and B and C) 5 P(A)P(B u A)P(C u A and B) 
5 0.065 3 0.012 3 0.40 5 0.00031

Only about three of every 10,000 high school football players can expect to 
compete in college and have an NFL career of more than three years. High school 
football players would be wise to concentrate on studies rather than unrealistic hopes 
of fortune from pro football. 

Tree diagrams
In Example 4.21, we investigated the likelihood of a high school football player 
going on to play collegiately and then have an NFL career of more than three years. 
The sports of football and basketball are unique in that players are prohibited from 
going straight into professional ranks from high school. Baseball, however, has no 
such restriction. Some baseball players might make the professional rank through 
the college route, while others might ultimately make it coming out of high school, 
often with a journey through the minor leagues.

The calculation of the probability of a baseball player becoming a professional 
player involves more elaborate calculation than the football scenario. We illustrate 
with our next example how the use of a tree diagram can help organize our thinking.

EXAMPLE 4.22  How Many Go to MLB?

For baseball, 6.8% of high school players go on to play at the college level. Of 
these, 9.4% will play in Major League Baseball (MLB).18 Borrowing the notation 
of Example 4.21, the probability of a high school player ultimately playing 
professionally is P(B). To find P(B), consider the tree diagram shown in Figure 4.8.

Each segment in the tree is one stage of the problem. Each complete branch 
shows a path that a player can take. The probability written on each segment is the 
conditional probability that a player follows that segment given that he has reached 
the point from which it branches. Starting at the left, high school baseball players 
either do or do not compete in college. We know that the probability of competing 
in college is P(A) 5 0.068, so the probability of not competing is P(Ac) 5 0.932. 
These probabilities mark the leftmost branches in the tree.

Conditional on competing in college, the probability of playing in MLB is  
P(B u A) 5 0.094. So the conditional probability of not playing in MLB is 

P(Bc u A) 5 1 2 P(B u A) 5 1 2 0.094 5 0.906

These conditional probabilities mark the paths branching out from A in Figure 4.8.
The lower half of the tree diagram describes players who do not compete in 

college (Ac). For baseball, in years past, the majority of destined professional players 
did not take the route through college. However, nowadays it is relatively unusual 

tree diagram
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202	 CHAPTER 4  Probability: The Study of Randomness  

for players to go straight from high school to MLB. Studies have shown that the 
conditional probability that a high school athlete reaches MLB, given that he does 
not compete in college, is P(B u Ac) 5 0.002.19 We can now mark the two paths 
branching from Ac in Figure 4.8.

There are two disjoint paths to B (MLB play). By the addition rule, P(B) is the 
sum of their probabilities. The probability of reaching B through college (top half 
of the tree) is 

P(A and B) 5 P(A)P(B u A)
5 0.068 3 0.094 5 0.006392

The probability of reaching B without college is 

P(Ac and B) 5 P(Ac)P(B u Ac)
5 0.932 3 0.002 5 0.001864

The final result is 

P(B) 5 0.006392 1 0.001864 5 0.008256

About eight high school baseball players out of 1000 will play professionally. 
Even though this probability is quite small, it is comparatively much greater than the 
chances of making it to the professional ranks in basketball and football. 

It takes longer to explain a tree diagram than it does to use it. Once you have 
understood a problem well enough to draw the tree, the rest is easy. Tree diagrams 
combine the addition and multiplication rules. The multiplication rule says that the 
probability of reaching the end of any complete branch is the product of the prob-
abilities written on its segments. The probability of any outcome, such as the event 
B that a high school baseball player plays in MLB, is then found by adding the prob-
abilities of all branches that are part of that event.

Apply your Knowledge

4.61  Labor rates.  Refer to the labor data in Example 4.18 (page 197). Draw 
a tree diagram with the first-stage branches being gender. Then, off the gender 
branches, draw two branches as the outcomes being “labor force participating’’ 
versus “not in the labor force.’’ Show how the tree would be used to compute the 
probability that a randomly chosen person is labor force participating.

High school
athlete

College

Professional

A

Ac

B

B

Bc

Bc
0.068

0.932

0.094

0.906

0.002

0.998

FIGURE 4.8  Tree diagram and 
probabilities, Example 4.22.
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Bayes’s rule
There is another kind of probability question that we might ask in the context of 
studies of athletes. Our earlier calculations look forward toward professional sports 
as the final stage of an athlete’s career. Now let’s concentrate on professional athletes 
and look back at their earlier careers.

EXAMPLE 4.23  Professional Athletes’ Pasts

What proportion of professional athletes competed in college? In the notation of 
Examples 4.21 and 4.22, this is the conditional probability P(A u B). Before we 
compute this probability, let’s take stock of a few facts. First, the multiplication rule 
tells us 

P(A and B) 5 P(A)P(B u A)

We know the probabilities P(A) and P(Ac) that a high school baseball player 
does and does not compete in college. We also know the conditional probabilities 
P(B u A) and P(B u Ac) that a player from each group reaches MLB. Example 4.22 
shows how to use this information to calculate P(B). The method can be summarized 
in a single expression that adds the probabilities of the two paths to B in the tree 
diagram: 

P(B) 5 P(A)P(B u A) 1 P(Ac)P(B u Ac) 

Combining these facts, we can now make the following computation: 

PsA u Bd 5
PsA and Bd

PsBd

5
PsAd PsB u Ad

PsAd PsB u Ad 1 PsAcd PsB u Acd

5
0.068 3 0.094

0.068 3 0.094 1 0.932 3 0.002
5 0.774

About 77% of MLB players competed in college. 

In calculating the “reverse’’ conditional probability of Example 4.23, we had 
two disjoint events in A and Ac whose probabilities add to exactly 1. We also had the 
conditional probabilities of event B given each of the disjoint events. More gener-
ally, there can be applications in which we have more than two disjoint events whose 
probabilities add up to 1. Put in general notation, we have another probability law.

Bayes’s Rule
Suppose that A1, A2, . . . , Ak are disjoint events whose probabilities are not 0 
and add to exactly 1. That is, any outcome is in exactly one of these events. 
Then, if B is any other event whose probability is not 0 or 1,

PsAi u Bd 5
PsB u Aid PsAid

PsB u A1d PsA1d 1 PsB u A2d PsA2d 1 . . . 1 PsB u Akd PsAkd

The numerator in Bayes’s rule is always one of the terms in the sum that makes 
up the denominator. The rule is named after Thomas Bayes, who wrestled with argu-
ing from outcomes like event B back to the Ai in a book published in 1763. Our next 
example utilizes Bayes’s rule with several disjoint events.
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204	 CHAPTER 4  Probability: The Study of Randomness  

EXAMPLE 4.24  Credit Ratings

Corporate bonds are assigned a credit rating that provides investors with a guide 
of the general creditworthiness of a corporation as a whole. The most well-known 
credit rating agencies are Moody’s, Standard & Poor’s, and Fitch. These rating agen-
cies assign a letter grade to the bond issuer. For example, Fitch uses the letter clas-
sifications of AAA, AA, A, BBB, BB, B, CCC, and D. Over time, the credit ratings 
of the corporation can change. Credit rating specialists use the terms of “credit 
migration’’ or “transition rate’’ to indicate the probability of a corporation going 
from letter grade to letter grade over some particular span of time. For example, 
based on a large amount of data from 1990 to 2013, Fitch estimates that the five-year 
transition rates to be graded AA in the fifth year based on each of the current (“first 
year’’) grades to be:20

Current rating AA (in 5th year)

AAA 0.2283 

AA 0.6241 

A 0.0740 

BBB 0.0071 

BB 0.0012 

B 0.0000 

CCC 0.0000 

D 0.0000 

Recognize that these values represent conditional probabilities. For example, P(AA 
rating in 5 years u AAA rating currently) 5 0.2283. In the financial institution sector, 
the distribution of grades for year 2013 are

Rating AAA AA A BBB BB B CCC D

Proportion 0.010 0.066 0.328 0.358 0.127 0.106 0.004 0.001

The transition rates give us probabilities rating changes moving forward. An 
interesting question is where might a corporation have come from looking back ret-
rospectively. Imagine yourself now in year 2018, and you randomly pick a financial 
institution that has a AA rating. What is the probability that institution had a AA 
rating in year 2013? A knee jerk reaction might be to answer 0.6241; however, that 
would be incorrect. Define these events:

AA13 5 {rated AA in year 2013} 
AA18 5 {rated AA in year 2018} 

We are seeking P(AA13 u AA18) while the transition table gives us P(AA18 u 
AA13). From the distribution of grades for 2013, we have P(AA13) 5 0.066. Because 
grades are disjoint and their probabilities add to 1, we can employ Bayes’s rule. It 
will be convenient to present the calculations of the terms in Bayes’s rule as a table. 

2013 grade P(2013 grade) P(AA18 u 2013 grade) P(AA18 u 2013 grade) P(2013 grade)

AAA 0.010 0.2283 (0.2283)(0.010) 5 0.002283 

AA 0.066 0.6241 (0.6241)(0.066) 5 0.041191 

A 0.328 0.0740 (0.0740)(0.328) 5 0.024272 

BBB 0.358 0.0071 (0.0071)(0.358) 5 0.002542 

(Continued)
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4.3  General Probability Rules    205

2013 grade P(2013 grade) P(AA18 u 2013 grade) P(AA18 u 2013 grade) P(2013 grade)

BB 0.127 0.0012 (0.0012)(0.127) 5 0.000152

B 0.106 0.0000 (0.0000)(0.106) 5 0 

CCC 0.004 0.0000 (0.0000)(0.004) 5 0 

D 0.001 0.0000 (0.0000)(0.001) 5 0 

Here is the computation of the desired probability using Bayes’s rule along with 
the preceding computed values: 

PsAA13 u AA18d 5
PsAA13dPsAA18 u AA13d

PsAA18d

5
0.041191

0.002283 1 0.041191 1 0.024272 1 0.002542 1 0.000152 1 0 1 0 1 0

5
0.041191

0.07044
5 0.5848

The probability is 0.5848, not 0.6241, that a corporation rated AA in 2018 was rated 
AA five years earlier in 2013. This example demonstrates the important general 
caution that we must not confuse P(A u B) with P(B u A).

Independence again
The conditional probability P(B u A) is generally not equal to the unconditional 
probability P(B). That is because the occurrence of event A generally gives us some 
additional information about whether or not event B occurs. If knowing that A occurs 
gives no additional information about B, then A and B are independent events. The 
formal definition of independence is expressed in terms of conditional probability.

Independent Events
Two events A and B that both have positive probability are independent if 

P(B u A) 5 P(B)

This definition makes precise the informal description of independence given 
in Section 4.2. We now see that the multiplication rule for independent events,  
P(A and B) 5 P(A)P(B), is a special case of the general multiplication rule, P(A and B) 5  
P(A)P(B u A), just as the addition rule for disjoint events is a special case of the 
general addition rule.

SECTION 4.3  Summary

•	 The complement Ac of an event A contains all outcomes that are not in A. The 
union {A or B} of events A and B contains all outcomes in A, in B, and in both A 
and B. The intersection {A and B} contains all outcomes that are in both A and 
B, but not outcomes in A alone or B alone.

•	 The conditional probability P(B u A) of an event B, given an event A, is defined by 

PsB u Ad 5
PsA and Bd

PsAd
�when P(A) . 0. In practice, conditional probabilities are most often found from 
directly available information.
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206	 CHAPTER 4  Probability: The Study of Randomness  

•	 The essential general rules of elementary probability are 

Legitimate values: 0 # P(A) # 1 for any event A 
Total probability 1: P(S) 5 1
Complement rule: P(Ac) 5 1 2 P(A) 
Addition rule: P(A or B) 5 P(A) 1 P(B) 2 P(A and B) 
Multiplication rule: P(A and B) 5 P(A)P(B u A) 

•	 If A and B are disjoint, then P(A and B) 5 0. The general addition rule for unions 
then becomes the special addition rule, P(A or B) 5 P(A) 1 P(B).

•	 A and B are independent when P(B u A) 5 P(B). The multiplication rule for 
intersections then becomes P(A and B) 5 P(A)P(B).

•	 In problems with several stages, draw a tree diagram to organize use of the 
multiplication and addition rules.

•	 If A1, A2, . . . , Ak are disjoint events whose probabilities are not 0 and add to 
exactly 1 and if B is any other event whose probability is not 0 or 1, then Bayes’s 
rule can be used to calculate P(Ai u B) as follows: 

PsAi u Bd 5
PsB u AidPsAid

PsB u A1dPsA1d 1 PsB u A2dPsA2d 1 . . . 1 PsB u Akd PsAkd

SECTION 4.3  Exercises 

For Exercise 4.54, see page 195; for 4.55,  
see page 197; for 4.56, see page 198; for 4.57 and 
4.58, see pages 198–199; for 4.59 and 4.60,  
see page 200; and for 4.61, see page 202.

4.62  Find and explain some probabilities. 
(a) Can we have an event A that has negative probability? 
Explain your answer. 
(b) Suppose P(A) 5 0.2 and P(B) 5 0.4. Explain what it 
means for A and B to be disjoint. Assuming that they are 
disjoint, find the probability that A or B occurs. 
(c) Explain in your own words the meaning of the rule 
P(S) 5 1.
(d) Consider an event A. What is the name for the 
event that A does not occur? If P(A) 5 0.3, what is the 
probability that A does not occur? 
(e) Suppose that A and B are independent and that P(A) 5  
0.2 and P(B) 5 0.5. Explain the meaning of the event {A 
and B}, and find its probability.

4.63  Unions.
(a) Assume that P(A) 5 0.4, P(B) 5 0.3, and P(C) 5 0.1. 
If the events A, B, and C are disjoint, find the probability 
that the union of these events occurs. 
(b) Draw a Venn diagram to illustrate your answer to  
part (a). 
(c) Find the probability of the complement of the union 
of A, B, and C.

4.64  Conditional probabilities.  Suppose that P(A) 5 
0.5, P(B) 5 0.3, and P(B u A) 5 0.2.
(a) Find the probability that both A and B occur. 
(b) Use a Venn diagram to explain your calculation. 
(c) What is the probability of the event that B occurs and 
A does not?

4.65  Find the probabilities.  Suppose that the  
probability that A occurs is 0.6 and the probability that 
A and B occur is 0.5. 
(a) Find the probability that B occurs given that A occurs. 
(b) Illustrate your calculations in part (a) using a Venn 
diagram.

4.66  What’s wrong?  In each of the following scenar-
ios, there is something wrong. Describe what is wrong 
and give a reason for your answer. 
(a) P(A or B) is always equal to the sum of P(A)  
and P(B).
(b) The probability of an event minus the probability of 
its complement is always equal to 1. 
(c) Two events are disjoint if P(B u A) 5 P(B).

4.67  Attendance at two-year and four-year  
colleges.  In a large national population of college  
students, 61% attend four-year institutions and the rest 
attend two-year institutions. Males make up 44% of 
the students in the four-year institutions and 41% of 
the students in the two-year institutions. 
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4.3  General Probability Rules    207

(a) Find the four probabilities for each combination of 
gender and type of institution in the following table. Be 
sure that your probabilities sum to 1.

Men Women 

Four-year institution 

Two-year institution 

(b) Consider randomly selecting a female student from 
this population. What is the probability that she attends a 
four-year institution?

4.68  Draw a tree diagram.  Refer to the previous 
exercise. Draw a tree diagram to illustrate the  
probabilities in a situation in which you first identify 
the type of institution attended and then identify the 
gender of the student.

4.69  Draw a different tree diagram for the same 
setting.  Refer to the previous two exercises. Draw a 
tree diagram to illustrate the probabilities in a  
situation in which you first identify the gender of the  
student and then identify the type of institution 
attended. Explain why the probabilities in this tree 
diagram are different from those that you used in the 
previous exercise.

4.70  Education and income.  Call a household 
prosperous if its income exceeds $100,000. Call the 
household educated if at least one of the householders 
completed college. Select an American household at ran-
dom, and let A be the event that the selected household is 
prosperous and B the event that it is educated. According 
to the Current Population Survey, P(A) 5 0.138, P(B) 5  
0.261, and the probability that a household is both pros-
perous and educated is P(A and B) 5 0.082. What is 
the probability P(A or B) that the household selected is 
either prosperous or educated?

4.71  Find a conditional probability.  In the setting 
of the previous exercise, what is the conditional prob-
ability that a household is prosperous, given that it is 
educated? Explain why your result shows that events A 
and B are not independent.

4.72  Draw a Venn diagram.  Draw a Venn diagram 
that shows the relation between the events A and B in 
Exercise 4.70. Indicate each of the following events 
on your diagram and use the information in Exercise 
4.70 to calculate the probability of each event. Finally, 
describe in words what each event is.
(a) {A and B}.
(b) {Ac and B}.
(c) {A and Bc}.
(d) {Ac and Bc}.

4.73  Sales of cars and light trucks.  Motor vehicles 
sold to individuals are classified as either cars or 
light trucks (including SUVs) and as either domestic 
or imported. In a recent year, 69% of vehicles sold 
were light trucks, 78% were domestic, and 55% were 
domestic light trucks. Let A be the event that a vehicle 
is a car and B the event that it is imported. Write each 
of the following events in set notation and give its 
probability.
(a) The vehicle is a light truck. 
(b) The vehicle is an imported car.

4.74  Conditional probabilities and independence.   
Using the information in Exercise 4.73, answer these 
questions. 
(a) Given that a vehicle is imported, what is the 
conditional probability that it is a light truck? 
(b) Are the events “vehicle is a light truck’’ and “vehicle 
is imported’’ independent? Justify your answer.

4.75  Unemployment rates.  As noted in Example 
4.18 (page 197), in the language of government statis-
tics, you are “in the labor force’’ if you are available 
for work and either working or actively seeking work. 
The unemployment rate is the proportion of the labor 
force (not of the entire population) who are unem-
ployed. Based on the table given in Example 4.18, find 
the unemployment rate for people with each gender. 
How does the unemployment rate change with gender? 
Explain carefully why your results suggest that gender 
and being employed are not independent.

4.76  Loan officer decision.  A loan officer is con-
sidering a loan request from a customer of the bank. 
Based on data collected from the bank’s records over 
many years, there is an 8% chance that a customer 
who has overdrawn an account will default on the loan. 
However, there is only a 0.6% chance that a customer 
who has never overdrawn an account will default on 
the loan. Based on the customer’s credit history, the 
loan officer believes there is a 40% chance that this 
customer will overdraw his account. Let D be the event 
that the customer defaults on the loan, and let O be the 
event that the customer overdraws his account.
(a) Express the three probabilities given in the problem 
in the notation of probability and conditional probability.
(b) What is the probability that the customer will default 
on the loan?

4.77  Loan officer decision.  Considering the informa-
tion provided in the previous exercise, calculate P(O u D).  
Show your work. Also, express this probability in words 
in the context of the loan officer’s decision. If new infor-
mation about the customer becomes available before 
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208	 CHAPTER 4  Probability: The Study of Randomness  

the loan officer makes her decision, and if this informa-
tion indicates that there is only a 25% chance that this 
customer will overdraw his account rather than a 40% 
chance, how does this change P(O u D)?

4.78  High school football players.  Using the infor-
mation in Example 4.21 (pages 200–201), determine 
the proportion of high school football players expected 
to play professionally in the NFL.

4.79  High school baseball players.  It is estimated that 
56% of MLB players have careers of three or more years. 
Using the information in Example 4.22 (pages 201–202), 
determine the proportion of high school players expected 
to play three or more years in MLB.

4.80  Telemarketing.  A telemarketing company calls 
telephone numbers chosen at random. It finds that 70% 
of calls are not completed (the party does not answer 
or refuses to talk), that 20% result in talking to a 
woman, and that 10% result in talking to a man. After 
that point, 30% of the women and 20% of the men 
actually buy something. What percent of calls result in 
a sale? (Draw a tree diagram.)

4.81  Preparing for the GMAT.  A company that 
offers courses to prepare would-be MBA students for 
the GMAT examination finds that 40% of its custom-
ers are currently undergraduate students and 60% are 
college graduates. After completing the course, 50% of 
the undergraduates and 70% of the graduates achieve 
scores of at least 600 on the GMAT. Use a tree diagram 
to organize this information. 
(a) What percent of customers are undergraduates 
and score at least 600? What percent of customers are 
graduates and score at least 600? 
(b) What percent of all customers score at least 600 on 
the GMAT?

4.82  Sales to women.  In the setting of Exercise 4.80, 
what percent of sales are made to women? (Write this 
as a conditional probability.)

4.83  Success on the GMAT.  In the setting of Exer-
cise 4.81, what percent of the customers who score at 
least 600 on the GMAT are undergraduates? (Write 
this as a conditional probability.)

4.84  Successful bids.  Consolidated Builders has 
bid on two large construction projects. The company 
president believes that the probability of winning the 
first contract (event A) is 0.6, that the probability of 
winning the second (event B) is 0.5, and that the prob-
ability of winning both jobs (event {A and B}) is 0.3. 
What is the probability of the event {A or B} that Con-
solidated will win at least one of the jobs?

4.85  Independence?  In the setting of the previous 
exercise, are events A and B independent? Do a calcu-
lation that proves your answer.

4.86  Successful bids, continued.  Draw a Venn dia-
gram that illustrates the relation between events A and 
B in Exercise 4.84. Write each of the following events 
in terms of A, B, Ac, and Bc. Indicate the events on your 
diagram and use the information in Exercise 4.84 to 
calculate the probability of each.
(a) Consolidated wins both jobs.
(b) Consolidated wins the first job but not the second.
(c) Consolidated does not win the first job but does win 
the second.
(d) Consolidated does not win either job.

4.87  Credit card defaults.  The credit manager for 
a local department store is interested in customers 
who default (ultimately failed to pay entire balance). 
Of those customers who default, 88% were late (by a 
week or more) with two or more monthly payments. 
This prompts the manager to suggest that future 
credit be denied to any customer who is late with two 
monthly payments. Further study shows that 3% of all 
credit customers default on their payments and 40% of 
those who have not defaulted have had at least two late 
monthly payments in the past.
(a) What is the probability that a customer who has two 
or more late payments will default?
(b) Under the credit manager’s policy, in a group of 100 
customers who have their future credit denied, how many 
would we expect not to default on their payments?
(c) Does the credit manager’s policy seem reasonable? 
Explain your response.

4.88  Examined by the IRS.  The IRS examines 
(audits) some tax returns in greater detail to verify 
that the tax reported is correct. The rates of examina-
tion vary depending on the size of the individual’s 
adjusted gross income. In 2014, the IRS reported the 
percentages of total returns by adjusted gross income 
categories and the examination coverage (%) of returns 
within the given income category:21

Income ($) Returns filed (%) 
Examination 
coverage (%)

None   2.08 6.04

1 under 25K 39.91 1.00

25K under 50K 23.55 0.62

50K under 75K 13.02 0.60

75K under 100K   8.12 0.58

100K under 200K 10.10 0.77

200K under 500K   2.60 2.06

(Continued)
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Income ($) Returns filed (%) 
Examination 
coverage (%)

500K under 1MM 0.41   3.79

1MM under 5MM 0.19   9.02

5MM under 10MM 0.01 15.98

10MM or more 0.01 24.16

(a) Suppose a 2013 return is randomly selected and  
it was examined by the IRS. Use Bayes’s rule to 
determine the probability that the individual’s adjusted 
gross income falls in the range of $5 to $10 million. 
Compute the probability to at least the thousandths  
place. 
(b) The IRS reports that 0.96% of all returns are 
examined. With the information provided, show how you 
can arrive at this reported percent.

4.89  Supplier Quality.  A manufacturer of an assem-
bly product uses three different suppliers for a par-
ticular component. By means of supplier audits, the 

manufacturer estimates the following percentages of 
defective parts by supplier:

Supplier 1 2 3 

Percent defective 0.4% 0.3% 0.6% 

Shipments from the suppliers are continually streaming 
to the manufacturer in small lots from each of the suppliers. 
As a result, the inventory of parts held by the manufacturer 
is a mix of parts representing the relative supplier rate from 
each supplier. In current inventory, there are 423 parts 
from Supplier 1, 367 parts from Supplier 2, and 205 parts 
from Supplier 3. Suppose a part is randomly chosen from 
inventory. Define “S1’’ as the event the part came from 
Supplier 1, “S2’’ as the event the part came from Supplier 2, 
and “S3’’ as the event the part came from Supplier 3. Also, 
define “D’’ as the event the part is defective.
(a) Based on the inventory mix, determine P(S1), P(S2), 
and P(S3).
(b) If the part is found to be defective, use Bayes’s rule 
to determine the probability that it came from Supplier 3.

4.4 Random Variables
Sample spaces need not consist of numbers. When we toss a coin four times, we can 
record the outcome as a string of heads and tails, such as HTTH. In statistics, how-
ever, we are most often interested in numerical outcomes such as the count of heads 
in the four tosses. It is convenient to use a shorthand notation: Let X be the number 
of heads. If our outcome is HTTH, then X 5 2. If the next outcome is TTTH, the 
value of X changes to X 5 1. The possible values of X are 0, 1, 2, 3, and 4. Tossing a 
coin four times will give X one of these possible values. Tossing four more times will 
give X another and probably different value. We call X a random variable because 
its values vary when the coin tossing is repeated.

Random Variable
A random variable is a variable whose value is a numerical outcome of a 
random phenomenon. 

In the preceding coin-tossing example, the random variable is the number of 
heads in the four tosses.

We usually denote random variables by capital letters near the end of the alpha-
bet, such as X or Y. Of course, the random variables of greatest interest to us are 
outcomes such as the mean x of a random sample, for which we will keep the famil-
iar notation.22 As we progress from general rules of probability toward statistical 
inference, we will concentrate on random variables.

With a random variable X, the sample space S just lists the possible values of the 
random variable. We usually do not mention S separately. There remains the second 
part of any probability model, the assignment of probabilities to events. There are 
two main ways of assigning probabilities to the values of a random variable. The two 
types of probability models that result will dominate our application of probability 
to statistical inference.
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210	 CHAPTER 4  Probability: The Study of Randomness  

Discrete random variables
We have learned several rules of probability, but only one method of assigning probabili-
ties: state the probabilities of the individual outcomes and assign probabilities to events 
by summing over the outcomes. The outcome probabilities must be between 0 and 1 and 
have sum 1. When the outcomes are numerical, they are values of a random variable. We 
now attach a name to random variables having probability assigned in this way.

Discrete Random Variable
A discrete random variable X has possible values that can be given in an ordered 
list. The probability distribution of X lists the values and their probabilities:

Value of X x1 x2 x3 . . .

Probability p1 p2 p3 . . .

The probabilities pi must satisfy two requirements:

1. Every probability pi is a number between 0 and 1.
2. The sum of the probabilities is 1; p1 1 p2 1 . . . 5 1.

Find the probability of any event by adding the probabilities pi of the 
particular values xi that make up the event.

In most of the situations that we will study, the number of possible values is a 
finite number, k. Think about the number of heads in four tosses of a coin. In this 
case, k 5 5 with X taking the possible values of 0, 1, 2, 3, and 4.

However, there are settings in which the number of possible values can be infi-
nite. Think about counting the number of tosses of a coin until you get a head. In this 
case, the set of possible values for X is given by {1, 2, 3, . . .}. As another example, 
suppose X represents the number of complaining customers to a retail store during a 
certain time period. Now, the set of possible values for X is given by {0, 1, 2, . . .}. 
In both of these examples, we say that there is a countably infinite number of pos-
sible values. Simply defined, countably infinite means that we can correspond each 
possible outcome to the counting or natural numbers of {0, 1, 2, . . .}.

In summary, a discrete random variable either has a finite number of possible 
values or has a countably infinite number of possible values.

countably infinite

C
A

SE 4.2

Tracking Perishable Demand  Whether a business is in manufacturing, 
retailing, or service, there is inevitably the need to hold inventory to meet 
demand on the items held in stock. One of most basic decisions in the control 
of an inventory management system is the decision of how many items should 
be ordered to be stocked. Ordering too much leads to unnecessary inventory 
costs, while ordering too little risks the organization to stock-out situations.

Hospitals have a unique challenge in the inventory management of blood. 
Blood is a perishable product, and hence a blood inventory management is a 
trade-off between shortage and wastage. The demand for blood and its compo-
nents fluctuates. Hospitals routinely track daily blood demand to estimate rates 
of usage so that they can manage their blood inventory.

For this case, we consider the daily usage of red blood cells (RBC) O 1 trans-
fusion blood bags collected from a Midwest hospital.23 These transfusion data 
are categorized as “new-aged” blood cells, which are used for the most critical 
patients, such as cancer and immune-deficient patients. If these blood cells are 
unused by day’s end, then they are downgraded to the category of medium-aged 
blood cells. Here is the distribution of the number of bags X used in a day:Ch
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4.4  Random Variables    211

We can use histograms to show probability distributions as well as distributions 
of data. Figure 4.9 displays the probability histogram of the blood bag prob-
abilities. The height of each bar shows the probability of the outcome at its base. 
Because the heights are probabilities, they add to 1. As usual, all the bars in a 
histogram have the same width. So the areas also display the assignment of prob-
ability to outcomes. For the blood bag distribution, we can visually see that more 
than 50% of the distribution is less than or equal to two bags and the distribution is 
generally skewed to the right. Histograms can also make it easy to quickly compare 
the two distributions. For example, Figure 4.10 compares the probability model for 
equally likely random digits (Example 4.13) (pages 186–187) with the model given 
by Benford’s law (Case 4.1) (pages 184–185).

EXAMPLE 4.25  Demand of at Least One Bag?

CASE 4.2 Consider the event that daily demand is at least one bag. In the language 
of random variables, 

P(X $ 1) 5 P(X 5 1) 1 P(X 5 2) 1 . . . 1 P(X 5 11) 1 P(X 5 12)
5 0.159 1 0.201 1 . . . 1 0.006 1 0.003 5 0.798

The adding of 12 probabilities is a bit of a tedious affair. But there is a much 
easier way to get at the ultimate probability when we think about the complement 
rule. The probability of at least one bag demanded is more simply found as follows: 

P(X $ 1) 5 1 2 P(X 5 0)
5 1 2 0.202 5 0.798

probability histogram

0
0 1 2 3 4 5 6 7 8 9 10 11 12

0.05

0.10

0.15

0.20
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Blood bags

FIGURE 4.9  Probability histo-
gram for blood bag demand 
probabilities. The height of 
each bar shows the prob-
ability assigned to a single 
outcome.

Bags used 0 1 2 3 4 5 6

Probability 0.202 0.159 0.201 0.125 0.088 0.087 0.056

Bags used 7 8 9 10 11 12

Probability 0.025 0.022 0.018 0.008 0.006 0.003
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212	 CHAPTER 4  Probability: The Study of Randomness  

With our discussions of discrete random variables in this chapter, it is important 
to note that our goal is for you to gain a base understanding of discrete random vari-
ables and how to work with them. In Chapter 5, we introduce you to two important 
discrete distributions, known as the binomial and Poisson distributions, that have 
wide application in business.

Apply your Knowledge

CASE 4.2  4.90  High demand.  Refer to Case 4.2 for the probability distribu-
tion on daily demand for blood transfusion bags.

(a) What is the probability that the hospital will face a high demand of either 
11 or 12 bags? Compute this probability directly using the respective prob-
abilities for 11 and 12 bags. 
(b) Now show how the complement rule would be used to find the same 
probability of part (a). 
(c) Consider the calculations of parts (a) and (b) and the calculations of 
Example 4.25 (page 211). Explain under what circumstances does the use of 
the complement rule ease computations?

4.91  How many cars?  Choose an American household at random and let the 
random variable X be the number of cars (including SUVs and light trucks) they 
own. Here is the probability model if we ignore the few households that own 
more than five cars: 

Number of cars X 0 1 2 3 4 5

Probability 0.09 0.36 0.35 0.13 0.05 0.02

(a)	Verify that this is a legitimate discrete distribution. Display the distribution 
in a probability histogram. 
(b)	Say in words what the event {X $ 1} is. Find P(X $ 1).
(c)	Your company builds houses with two-car garages. What percent of house-
holds have more cars than the garage can hold?
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0.3

0.2
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(b)

5 6 7 8 9

FIGURE 4.10  Probability 
histograms: (a) equally likely 
random digits 1 to 9; and (b) 
Benford’s law.
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4.4  Random Variables    213

Continuous random variables
When we use the table of random digits to select a digit between 0 and 9, the result 
is a discrete random variable. The probability model assigns probability 1/10 to each 
of the 10 possible outcomes. Suppose that we want to choose a number at random 
between 0 and 1, allowing any number between 0 and 1 as the outcome. Software 
random number generators will do this.

You can visualize such a random number by thinking of a spinner (Figure 4.11) 
that turns freely on its axis and slowly comes to a stop. The pointer can come to 
rest anywhere on a circle that is marked from 0 to 1. The sample space is now an 
interval of numbers: 

S 5 {all numbers x such that 0 # x # 1}

How can we assign probabilities to events such as {0.3 # x # 0.7}? As in the 
case of selecting a random digit, we would like all possible outcomes to be equally 
likely. But we cannot assign probabilities to each individual value of x and then sum, 
because there are infinitely many possible values.

Earlier, we noted that there are situations in which discrete random variables can 
take on an infinite number of possible values corresponding to the set of counting 
numbers {0, 1, 2, . . .}. However, the infinity associated with the spinner’s possible 
outcomes is a different infinity. There is no way to correspond the infinite number 
of decimal values in range from 0 to 1 to the counting numbers. We are dealing 
with the possible outcomes being associated with the real numbers as opposed to 
the counting numbers. As such, we say here that there is an uncountably infinite 
number of possible values.

In light of these facts, we need to use a new way of assigning probabilities 
directly to events—as areas under a density curve. Any density curve has area 
exactly 1 underneath it, corresponding to total probability 1.

EXAMPLE 4.26  Uniform Random Numbers

The random number generator will spread its output uniformly across the entire 
interval from 0 to 1 as we allow it to generate a long sequence of numbers. The 
results of many trials are represented by the density curve of a uniform distribution. 

This density curve appears in red in Figure 4.12. It has height 1 over the interval 
from 0 to 1, and height 0 everywhere else. The area under the density curve is 1: the 
area of a rectangle with base 1 and height 1. The probability of any event is the area 
under the density curve and above the event in question.

uncountably infinite

uniform distribution

3
4

1
4

0

1
2

FIGURE 4.11  A spinner that 
generates a random number 
between 0 and 1.
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214	 CHAPTER 4  Probability: The Study of Randomness  

As Figure 4.12(a) illustrates, the probability that the random number generator 
produces a number X between 0.3 and 0.7 is 

P(0.3 # X # 0.7) 5 0.4

because the area under the density curve and above the interval from 0.3 to 0.7 is 0.4. 
The height of the density curve is 1, and the area of a rectangle is the product of height 
and length, so the probability of any interval of outcomes is just the length of the interval.

Similarly, 

P(X # 0.5) 5 0.5
P(X . 0.8) 5 0.2

P(X # 0.5 or X . 0.8) 5 0.7

Notice that the last event consists of two nonoverlapping intervals, so the total area 
above the event is found by adding two areas, as illustrated by Figure 4.12(b). This 
assignment of probabilities obeys all of our rules for probability. 

Apply your Knowledge

4.92  Find the probability.  For the uniform distribution described in Example 
4.26, find the probability that X is between 0.2 and 0.7.

Probability as area under a density curve is a second important way of assigning 
probabilities to events. Figure 4.13 illustrates this idea in general form. We call X 
in Example 4.26 a continuous random variable because its values are not isolated 
numbers but an interval of numbers.

0 0.3 0.7 1

Area = 0.4

0 0.5 0.8 1
P (0.3 Ä Y Ä 0.7) P (Y Ä 0.5 or Y > 0.8)

Area = 0.2Area = 0.5

1

(a) (b)

FIGURE 4.12  Assigning probabilities for generating a random number between 0 and 1, 
Example 4.26. The probability of any interval of numbers is the area above the interval and 
under the density curve.

Area = P(A)

Event A

FIGURE 4.13  The probability 
distribution of a continuous  
random variable assigns 
probabilities as areas under a 
density curve. The total area 
under any density curve is 1.
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4.4  Random Variables    215

Continuous Random Variable 
A continuous random variable X takes all values in an interval of numbers. 
The probability distribution of X is described by a density curve. The prob-
ability of any event is the area under the density curve and above the values of 
X that make up the event.

The probability model for a continuous random variable assigns probabilities 
to intervals of outcomes rather than to individual outcomes. In fact, all continuous 
probability distributions assign probability 0 to every individual outcome. Only 
intervals of values have positive probability. To see that this is true, consider a specific 
outcome such as P(X 5 0.8) in the context of Example 4.26. The probability of any 
interval is the same as its length. The point 0.8 has no length, so its probability is 0.

Although this fact may seem odd, it makes intuitive, as well as mathematical, 
sense. The random number generator produces a number between 0.79 and 0.81 
with probability 0.02. An outcome between 0.799 and 0.801 has probability 0.002. 
A result between 0.799999 and 0.800001 has probability 0.000002. You see that as 
we approach 0.8 the probability gets closer to 0.

To be consistent, the probability of an outcome exactly equal to 0.8 must be 0. 
Because there is no probability exactly at X 5 0.8, the two events {X . 0.8} and  
{X $ 0.8} have the same probability. In general, we can ignore the distinction 
between . and $ when finding probabilities for continuous random variables. Simi-
larly, we can also ignore the distinction between , and # in the continuous case. 
However, when dealing with discrete random variables, we cannot ignore these 
distinctions. Thus, it is important to be alert as to whether you are dealing with 
continuous or discrete random variables when doing probability calculations. 

Normal distributions as probability distributions
The density curves that are most familiar to us are the Normal curves. Because 
any density curve describes an assignment of probabilities, Normal distributions 
are probability distributions. Recall from Section 1.4 (page 44) that N(m, s) is our 
shorthand for the Normal distribution having mean m and standard deviation s. In 
the language of random variables, if X has the N(m, s) distribution, then the stan-
dardized variable

Z 5
X 2 m

s

is a standard Normal random variable having the distribution N(0, 1).

EXAMPLE 4.27  Tread Life 

The actual tread life X of a 40,000-mile automobile tire has a Normal probability 
distribution with m 5 50,000 miles and s 5 5500 miles. We say X has an N(50,000, 
5500) distribution. From a manufacturer’s perspective, it would be useful to know 
the probability that a tire fails to meet the guaranteed wear life of 40,000 miles. 
Figure 4.14 shows this probability as an area under a Normal density curve. You can 
find it by software or by standardizing and using Table A. From Table A, 

PsX , 40,000d 5 P1X250,000

5500
,

40,000250,000

5500 2
5 P(Z , 21.82)
5 0.0344

The manufacturer should expect to incur warranty costs for about 3.4% of its tires.

reminder
standard Normal  

distribution, p. 46
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216	 CHAPTER 4  Probability: The Study of Randomness  

Apply your Knowledge

4.93  Normal probabilities.  Example 4.27 gives the Normal distribution 
N(50,000, 5500) for the tread life X of a type of tire (in miles). Calculate the 
following probabilities:

(a) The probability that a tire lasts more than 50,000 miles. 
(b) P(X . 60,000).
(c) P(X $ 60,000).

We began this chapter with a general discussion of the idea of probability and 
the properties of probability models. Two very useful specific types of probability 
models are distributions of discrete and continuous random variables. In our study 
of statistics, we employ only these two types of probability models.

SECTION 4.4  Summary

•	 A random variable is a variable taking numerical values determined by the 
outcome of a random phenomenon. The probability distribution of a random 
variable X tells us what the possible values of X are and how probabilities are 
assigned to those values.

•	 A random variable X and its distribution can be discrete or continuous.

•	 A discrete random variable has possible values that can be given in an ordered 
list. The probability distribution assigns each of these values a probability between  
0 and 1 such that the sum of all the probabilities is 1. The probability of any event 
is the sum of the probabilities of all the values that make up the event.

•	 A continuous random variable takes all values in some interval of numbers. 
A density curve describes the probability distribution of a continuous random 
variable. The probability of any event is the area under the curve and above the 
values that make up the event.

•	 Normal distributions are one type of continuous probability distribution.

•	 You can picture a probability distribution by drawing a probability histogram in 
the discrete case or by graphing the density curve in the continuous case.

30,000 40,000 50,000 60,000 70,000

Area =
0.0344

FIGURE 4.14  The Normal 
distribution with m 5 50,000 
and s 5 5500. The shaded 
area is P(X , 40,000), calcu-
lated in Example 4.27.
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4.4  Random Variables    217

SECTION 4.4  Exercises

For Exercises 4.90 and 4.91, see page 212; for 4.92, 
see page 214; and for 4.93, see page 216.

CASE 4.2 4.94  Two day demand.  Refer to the dis-
tribution of daily demand for blood bags X in Case 4.2 
(pages 210–211). Let Y be the total demand over two days.  
Assume that demand is independent from day to day. 
(a) List the possible values for Y. 
(b) From the distribution of daily demand, we find that 
the probability that no bags are demanded on a given 
day is 0.202. In that light, suppose a hospital manager 
states, “The chances that no bags are demanded over two 
consecutive days is 0.404.’’ Provide a simple argument 
to the manager explaining the mistake in probability 
conclusion. (Hint: Use more than two days as the basis 
for your argument.) 
(c) What is the probability that the total demand over two 
days is 0? In terms of the random variable, what is  
P(Y 5 0)?

4.95  How many courses?  At a small liberal arts  
college, students can register for one to six courses.  
In a typical fall semester, 5% take one course, 5% 
take two courses, 13% take three courses, 26% take 
four courses, 36% take five courses, and 15% take six 
courses. Let X be the number of courses taken in the 
fall by a randomly selected student from this college. 
Describe the probability distribution of this random 
variable.

4.96  Make a graphical display.  Refer to the previ-
ous exercise. Use a probability histogram to provide a 
graphical description of the distribution of X.

4.97  Find some probabilities.  Refer to 
Exercise 4.95. 
(a) Find the probability that a randomly selected student 
takes three or fewer courses. 
(b) Find the probability that a randomly selected student 
takes four or five courses. 
(c) Find the probability that a randomly selected student 
takes eight courses.

4.98  Texas hold ’em.  The game of Texas hold ’em 
starts with each player receiving two cards. Here is the 
probability distribution for the number of aces in two-
card hands: 

Number of aces 0 1 2 

Probability 0.8507 0.1448 0.0045 

(a) Verify that this assignment of probabilities satisfies 
the requirement that the sum of the probabilities for a 
discrete distribution must be 1. 
(b) Make a probability histogram for this distribution. 
(c) What is the probability that a hand contains at least one 
ace? Show two different ways to calculate this probability.

4.99  How large are households?  Choose an Ameri-
can household at random, and let X be the number of 
persons living in the household. If we ignore the few 
households with more than seven inhabitants, the prob-
ability model for X is as follows: 

Household size X 1 2 3 4 5 6 7 

Probability 0.27 0.33 0.16 0.14 0.06 0.03 0.01 

(a) Verify that this is a legitimate probability distribution.
(b) What is P(X $ 5)?
(c) What is P(X . 5)? 
(d) What is P(2 , X # 4)? 
(e) What is P(X Þ 1)?
(f) Write the event that a randomly chosen household 
contains more than two persons in terms of X. What is the 
probability of this event?

CASE 4.2 4.100  How much to order?  Faced with 
the demand for the perishable product in blood, hospi-
tal managers need to establish an ordering policy that 
deals with the trade-off between shortage and wastage. 
As it turns out, this scenario, referred to as a single-
period inventory problem, is well known in the area of 
operations management, and there is an optimal policy. 
What we need to know is the per item cost of being 
short (CS) and the per item cost of being in excess 
(CE). In terms of the blood example, the hospital esti-
mates that for every bag short, there is a cost of $80 
per bag, which includes expediting and emergency 
delivery costs. Any transfusion blood bags left in 
excess at day’s end are associated with $20 per bag 
cost, which includes the original cost of purchase 
along with end-of-day handling costs. With the objec-
tive of minimizing long-term average costs, the follow-
ing critical ratio (CR) needs to be computed:

CR 5
CS

CS 1 CE

Recognize that CR will always be in the range of 0 to 1. 
It turns out that the optimal number of items to order is 
the smallest value of k such that P(X # k) is at least the 
CR value. 
(a) Based on the given values of CS and CE, what is the 
value of CR? 
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218	 CHAPTER 4  Probability: The Study of Randomness  

(b) Given the CR found in part (a) and the distribution 
of blood bag demand (page 211), determine the optimal 
order quantity of blood bags per day. 
(c) Keeping CE at $20, for what range of values of CS does 
the hospital order three bags?

4.101  Discrete or continuous?  In each of the follow-
ing situations, decide whether the random variable is dis-
crete or continuous, and give a reason for your answer. 
(a) Your web page has five different links, and a user 
can click on one of the links or can leave the page. You 
record the length of time that a user spends on the web 
page before clicking one of the links or leaving the page. 
(b) The number of hits on your web page. 
(c) The yearly income of a visitor to your web page.

4.102  Use the uniform distribution.  Suppose that 
a random variable X follows the uniform distribu-
tion described in Example 4.26 (pages 213–214). For 
each of the following events, find the probability and 
illustrate your calculations with a sketch of the density 
curve similar to the ones in Figure 4.12 (page 214). 
(a) The probability that X is less than 0.1. 
(b) The probability that X is greater than or equal to 0.8. 
(c) The probability that X is less than 0.7 and greater than 0.5. 
(d) The probability that X is 0.5.

4.103  Spell-checking software.  Spell-checking  
software catches “nonword errors,” which are strings 
of letters that are not words, as when “the” is typed as 
“eth.” When undergraduates are asked to write a  
250-word essay (without spell-checking), the number 
X of nonword errors has the following distribution: 

Value of X 0 1 2 3 4

Probability 0.1 0.3 0.3 0.2 0.1

(a) Sketch the probability distribution for this random 
variable.
(b) Write the event “at least one nonword error’’ in terms 
of X. What is the probability of this event? 
(c) Describe the event X # 2 in words. What is its 
probability? What is the probability that X , 2?

4.104  Find the probabilities.  Let the random 
variable X be a random number with the uniform 

density curve in Figure 4.12 (page 214). Find the 
following probabilities: 
(a) P(X $ 0.30).
(b) P(X 5 0.30). 
(c) P(0.30 , X , 1.30). 
(d) P(0.20 # X # 0.25 or 0.7 # X # 0.9).
(e) X is not in the interval 0.4 to 0.7.

4.105  Uniform numbers between 0 and 2.  Many ran-
dom number generators allow users to specify the range 
of the random numbers to be produced. Suppose that 
you specify that the range is to be all numbers between 
0 and 2. Call the random number generated Y. Then the 
density curve of the random variable Y has constant 
height between 0 and 2, and height 0 elsewhere.
(a) What is the height of the density curve between 0 and 
2? Draw a graph of the density curve. 
(b) Use your graph from part (a) and the fact that 
probability is area under the curve to find P(Y # 1.6).
(c) Find P(0.5 , Y , 1.7). 
(d) Find P(Y $ 0.95).

4.106  The sum of two uniform random numbers.   
Generate two random numbers between 0 and 1 and 
take Y to be their sum. Then Y is a continuous random 
variable that can take any value between 0 and 2. The 
density curve of Y is the triangle shown in Figure 4.15. 
(a) Verify by geometry that the area under this  
curve is 1.
(b) What is the probability that Y is less than 1? (Sketch 
the density curve, shade the area that represents the 
probability, then find that area. Do this for part (c) also.)
(c) What is the probability that Y is greater than 0.6?

4.107  How many close friends?  How many close 
friends do you have? Suppose that the number of close 
friends adults claim to have varies from person to  
person with mean m 5 9 and standard deviation  
s 5 2.4. An opinion poll asks this question of an  
SRS of 1100 adults. We see in Chapter 6 that, in this 
situation, the sample mean response x has approxi-
mately the Normal distribution with mean 9 and  
standard deviation 0.0724. What is P(8 # x # 10), 
the probability that the statistic x estimates m to 
within 61?

0 1 2

Height = 1

FIGURE 4.15  The density curve 
for the sum of two random 
numbers, Exercise 4.106. This 
density curve spreads prob-
ability between 0 and 2.
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4.5  Means and Variances of Random Variables    219

4.108  Normal approximation for a sample proportion.   
A sample survey contacted an SRS of 700 registered  
voters in Oregon shortly after an election and asked 
respondents whether they had voted. Voter records show 
that 56% of registered voters had actually voted. We see  
in the next chapter that in this situation the proportion  
of the sample p⁄ who voted has approximately the Normal 
distribution with mean m 5 0.56 and standard deviation  
s 5 0.019.

(a) If the respondents answer truthfully, what is 
Ps0.52 # p⁄ # 0.60d? This is the probability that the 
sample proportion p⁄ estimates the mean of 0.56 within 
plus or minus 0.04. 
(b) In fact, 72% of the respondents said they had voted 
(p⁄ 5 0.72). If respondents answer truthfully, what is 
Psp⁄ $  0.72d? This probability is so small that it is good 
evidence that some people who did not vote claimed that 
they did vote.

4.5 Means and Variances of Random Variables
The probability histograms and density curves that picture the probability distribu-
tions of random variables resemble our earlier pictures of distributions of data. In 
describing data, we moved from graphs to numerical measures such as means and 
standard deviations. Now we make the same move to expand our descriptions of the 
distributions of random variables. We can speak of the mean winnings in a game of 
chance or the standard deviation of the randomly varying number of calls a travel 
agency receives in an hour. In this section, we learn more about how to compute 
these descriptive measures and about the laws they obey.

The mean of a random variable
In Chapter 1 (page 24), we learned that the mean x is the average of the observations in 
a sample. Recall that a random variable X is a numerical outcome of a random process. 
Think about repeating the random process many times and recording the resulting 
values of the random variable. In general, you can think of the mean of a random vari-
able as the average of a very large sample. In the case of discrete random variables, 
the relative frequencies of the values in the very large sample are the same as their 
probabilities.

Here is an example for a discrete random variable.

EXAMPLE 4.28  The Tri-State Pick 3 Lottery

Most states and Canadian provinces have government-sponsored lotteries. Here is a 
simple lottery wager from the Tri-State Pick 3 game that New Hampshire shares with 
Maine and Vermont. You choose a three-digit number, 000 to 999. The state chooses 
a three-digit winning number at random and pays you $500 if your number is chosen.

Because there are 1000 three-digit numbers, you have probability 1/1000 of win-
ning. Taking X to be the amount your ticket pays you, the probability distribution of X is 

Payoff X $0 $500

Probability 0.999 0.001

The random process consists of drawing a three-digit number. The population 
consists of the numbers 000 to 999. Each of these possible outcomes is equally likely 
in this example. In the setting of sampling in Chapter 3 (page 132), we can view the 
random process as selecting an SRS of size 1 from the population. The random variable 
X is 500 if the selected number is equal to the one that you chose and is 0 if it is not.

What is your average payoff from many tickets? The ordinary average of the 
two possible outcomes $0 and $500 is $250, but that makes no sense as the average 
because $500 is much less likely than $0. In the long run, you receive $500 once in 
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220	 CHAPTER 4  Probability: The Study of Randomness  

every 1000 tickets and $0 on the remaining 999 of 1000 tickets. The long-run aver-
age payoff is 

$500 
1

1000
1 $0 

999

1000
5 $0.50

or 50 cents. That number is the mean of the random variable X. (Tickets cost $1, so 
in the long run, the state keeps half the money you wager.) 

If you play Tri-State Pick 3 several times, we would, as usual, call the mean of 
the actual amounts you win x. The mean in Example 4.28 is a different quantity—it 
is the long-run average winnings you expect if you play a very large number of times.

Apply your Knowledge

4.109  Find the mean of the probability distribution.  You toss a fair coin. If 
the outcome is heads, you win $5.00; if the outcome is tails, you win nothing. 
Let X be the amount that you win in a single toss of a coin. Find the probability 
distribution of this random variable and its mean.

Just as probabilities are an idealized description of long-run proportions, the mean of 
a probability distribution describes the long-run average outcome. We can’t call this mean 
x, so we need a different symbol. The common symbol for the mean of a probability 
distribution is m, the Greek letter mu. We used m in Chapter 1 for the mean of a Normal 
distribution, so this is not a new notation. We will often be interested in several random 
variables, each having a different probability distribution with a different mean.

To remind ourselves that we are talking about the mean of X, we often write mX  
rather than simply m. In Example 4.28, mX 5 $0.50. Notice that, as often happens, 
the mean is not a possible value of X. You will often find the mean of a random vari-
able X called the expected value of X. This term can be misleading because we don’t 
necessarily expect an observation on X to equal its expected value.

The mean of any discrete random variable is found just as in Example 4.28. It is 
not simply an average of the possible outcomes, but a weighted average in which each 
outcome is weighted by its probability. Because the probabilities add to 1, we have total 
weight 1 to distribute among the outcomes. An outcome that occurs half the time has 
probability one-half and gets one-half the weight in calculating the mean. Here is the 
general definition.

Mean of a Discrete Random Variable
Suppose that X is a discrete random variable whose distribution is 

Value of X x1 x2 x3
. . .

Probability p1 p2 p3
. . .

To find the mean of X, multiply each possible value by its probability, then 
add all the products:

mX 5 x1p1 1 x2p2 1 . . .

5 oxi pi

EXAMPLE 4.29  The Mean of Equally Likely First Digits 

If first digits in a set of data all have the same probability, the probability distribution 
of the first digit X is then 

First digit X 1 2 3 4 5 6 7 8 9

Probability 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 

mean m

expected value
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The mean of this distribution is

mX 5 1 3
1

9
1 2 3

1

9
1 3 3

1

9
1 4 3

1

9
1 5

3
1

9
1 6 3

1

9
1 7 3

1

9
1 8 3

1

9
1 9 3

1

9

5 45 3
1

9
5 5

Suppose that the random digits in Example 4.29 had a different probability 
distribution. In Case 4.1 (pages 184–185), we described Benford’s law as a prob-
ability distribution that describes first digits of numbers in many real situations. Let’s 
calculate the mean for Benford’s law.

EXAMPLE 4.30  The Mean of First Digits That Follow Benford’s Law

CASE 4.1 Here is the distribution of the first digit for data that follow Benford’s law. 
We use the letter V for this random variable to distinguish it from the one that we 
studied in Example 4.29. The distribution of V is 

First digit V 1 2 3 4 5 6 7 8 9

Probability 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046 

The mean of V is

mV 5 (1)(0.301) 1 (2)(0.176) 1 (3)(0.125) 1 (4)(0.097) 1 (5)(0.079)  
         1 (6)(0.067) 1 (7)(0.058) 1 (8)(0.051) 1 (9)(0.046)

5 3.441

The mean reflects the greater probability of smaller first digits under Benford’s 
law than when first digits 1 to 9 are equally likely. 

Figure 4.16 locates the means of X and V on the two probability histograms. 
Because the discrete uniform distribution of Figure 4.16(a) is symmetric, the mean 
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5 6 7 8 9

FIGURE 4.16  Locating the 
mean of a discrete random 
variable on the probability 
histogram: (a) digits between 
1 and 9 chosen at random; 
and (b) digits between 1 and 
9 chosen from records that 
obey Benford’s law.
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222	 CHAPTER 4  Probability: The Study of Randomness  

lies at the center of symmetry. We can’t locate the mean of the right-skewed distribu-
tion of Figure 4.16(b) by eye—calculation is needed.

What about continuous random variables? The probability distribution of a con-
tinuous random variable X is described by a density curve. Chapter 1 showed how to 
find the mean of the distribution: it is the point at which the area under the density 
curve would balance if it were made out of solid material. The mean lies at the center 
of symmetric density curves such as the Normal curves. Exact calculation of the mean 
of a distribution with a skewed density curve requires advanced mathematics.24 The 
idea that the mean is the balance point of the distribution applies to discrete random 
variables as well, but in the discrete case, we have a formula that gives us this point.

Mean and the law of large numbers
With probabilities in hand, we have shown that, for discrete random variables, the 
mean of the distribution (m) can be determined by computing a weighted average in 
which each possible value of the random variable is weighted by its probability. For 
example, in Example 4.30, we found the mean of the first digit of numbers obeying 
Benford’s law is 3.441.

Suppose, however, we are unaware of the probabilities of Benford’s law but we 
still want to determine the mean of the distribution. To do so, we choose an SRS of 
financial statements and record the first digits of entries known to follow Benford’s 
law. We then calculate the sample mean x to estimate the unknown population mean m. 
In the vocabulary of statistics, m is referred to as a parameter and x is called a statistic. 
These terms and their definitions are more formally described in Section 5.3 when we 
introduce the ideas of statistical inference.

It seems reasonable to use x to estimate m. An SRS should fairly represent the 
population, so the mean x of the sample should be somewhere near the mean m  of the 
population. Of course, we don’t expect x to be exactly equal to m, and we realize that if 
we choose another SRS, the luck of the draw will probably produce a different x. How 
can we control the variability of the sample means? The answer is to increase the sample 
size. If we keep on adding observations to our random sample, the statistic x is guaran-
teed to get as close as we wish to the parameter m and then stay that close. We have the 
comfort of knowing that if we gather up more financial statements and keep recording 
more first digits, eventually we will estimate the mean value of the first digit very accu-
rately. This remarkable fact is called the law of large numbers. It is remarkable because 
it holds for any population, not just for some special class such as Normal distributions.

Law of Large Numbers
Draw independent observations at random from any population with finite 
mean m. As the number of observations drawn increases, the mean x of the 
observed values becomes progressively closer to the population mean m. 

The behavior of x is similar to the idea of probability. In the long run, the pro-
portion of outcomes taking any value gets close to the probability of that value, 
and the average outcome gets close to the distribution mean. Figure 4.1 (page 174) 
shows how proportions approach probability in one example. Here is an example of 
how sample means approach the distribution mean.

EXAMPLE 4.31  Applying the Law of Large Numbers

CASE 4.1 With a clipboard, we begin our sampling. The first randomly drawn finan-
cial statement entry has an 8 as its first digit. Thus, the initial sample mean is 8. We 
proceed to select a second financial statement entry, and find the first digit to be 3, 
so for n 5 2 the mean is now 

reminder
mean as balance  

point, p. 41
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x 5
8 1 3

2
5 5.5

As this stage, we might be tempted to think that digits are equally likely because 
we have observed a large and a small digit. The flaw in this thinking is obvious. We 
are believing that short-run results accurately reflect long-run behavior. With clear 
mind, we proceed to collect more observations and continue to update the sample 
mean. Figure 4.17 shows that the sample mean changes as we increase the sample 
size. Notice that the first point is 8 and the second point is the previously calculated 
mean of 5.5. More importantly, notice that the mean of the observations gets close 
to the distribution mean m 5 3.441 and settles down to that value. The law of large 
numbers says that this always happens. 

Apply your Knowledge

4.110  Use the Law of Large Numbers applet.  The Law of Large Numbers 
applet animates a graph like Figure 4.17 for rolling dice. Use it to better under-
stand the law of large numbers by making a similar graph.

The mean m of a random variable is the average value of the variable in two 
senses. By its definition, m is the average of the possible values, weighted by their 
probability of occurring. The law of large numbers says that m is also the long-run 
average of many independent observations on the variable. The law of large numbers 
can be proved mathematically starting from the basic laws of probability.

Thinking about the law of large numbers
The law of large numbers says broadly that the average results of many independent 
observations are stable and predictable. The gamblers in a casino may win or lose, 
but the casino will win in the long run because the law of large numbers says what 
the average outcome of many thousands of bets will be. An insurance company 
deciding how much to charge for life insurance and a fast-food restaurant deciding 
how many beef patties to prepare also rely on the fact that averaging over many 
individuals produces a stable result. It is worth the effort to think a bit more closely 
about so important a fact.

Number of observations, n
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FIGURE 4.17  The law of 
large numbers in action. As 
we take more observations, 
the sample mean x always 
approaches the mean (m) of 
the population.
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224	 CHAPTER 4  Probability: The Study of Randomness  

The “law of small numbers’’
Both the rules of probability and the law of large numbers describe the regular 
behavior of chance phenomena in the long run. Psychologists have discovered that 
our intuitive understanding of randomness is quite different from the true laws of 
chance.25 For example, most people believe in an incorrect “law of small numbers.’’ 
That is, we expect even short sequences of random events to show the kind of aver-
age behavior that, in fact, appears only in the long run.

Some teachers of statistics begin a course by asking students to toss a coin 
50 times and bring the sequence of heads and tails to the next class. The teacher 
then announces which students just wrote down a random-looking sequence 
rather than actually tossing a coin. The faked tosses don’t have enough “runs’’ 
of consecutive heads or consecutive tails. Runs of the same outcome don’t look 
random to us but are, in fact, common. For example, the probability of a run of 
three or more consecutive heads or tails in just 10 tosses is greater than 0.8.26 
The runs of consecutive heads or consecutive tails that appear in real coin tossing 
(and that are predicted by the mathematics of probability) seem surprising to us. 
Because we don’t expect to see long runs, we may conclude that the coin tosses 
are not independent or that some influence is disturbing the random behavior of 
the coin.

EXAMPLE 4.32  The “Hot Hand’’ in Basketball

Belief in the law of small numbers influences behavior. If a basketball player makes 
several consecutive shots, both the fans and her teammates believe that she has a 
“hot hand’’ and is more likely to make the next shot. This is doubtful.

Careful study suggests that runs of baskets made or missed are no more frequent 
in basketball than would be expected if each shot were independent of the player’s 
previous shots. Baskets made or missed are just like heads and tails in tossing a coin. 
(Of course, some players make 30% of their shots in the long run and others make 
50%, so a coin-toss model for basketball must allow coins with different probabili-
ties of a head.) Our perception of hot or cold streaks simply shows that we don’t 
perceive random behavior very well.27

Our intuition doesn’t do a good job of distinguishing random behavior from 
systematic influences. This is also true when we look at data. We need statistical 
inference to supplement exploratory analysis of data because probability calcula-
tions can help verify that what we see in the data is more than a random pattern.

How large is a large number?
The law of large numbers says that the actual mean outcome of many trials gets 
close to the distribution mean m as more trials are made. It doesn’t say how many 
trials are needed to guarantee a mean outcome close to m. That depends on the vari-
ability of the random outcomes. The more variable the outcomes, the more trials 
are needed to ensure that the mean outcome x is close to the distribution mean m. 
Casinos understand this: the outcomes of games of chance are variable enough to 
hold the interest of gamblers. Only the casino plays often enough to rely on the law 
of large numbers. Gamblers get entertainment; the casino has a business.

Rules for means
Imagine yourself as a financial adviser who must provide advice to clients regard-
ing how to distribute their assets among different investments such as individual 
stocks, mutual funds, bonds, and real estate. With data available on all these 
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4.5  Means and Variances of Random Variables    225

financial instruments, you are able to gather a variety of insights, such as the 
proportion of the time a particular stock outperformed the market index, the aver-
age performance of the different investments, the consistency or inconsistency 
of performance of the different investments, and relationships among the invest-
ments. In other words, you are seeking measures of probability, mean, standard 
deviation, and correlation. In general, the discipline of finance relies heavily on 
a solid understanding of probability and statistics. In the next case, we explore 
how the concepts of this chapter play a fundamental role in constructing an 
investment portfolio.

C
A

SE 4.3

Portfolio Analysis  One of the fundamental measures of performance of 
an investment is its rate of return. For a stock, rate of return of an investment 
over a time period is basically the percent change in the share price during the 
time period. However, corporate actions such as dividend payments and stock 
splits can complicate the calculation. A stock’s closing price can be amended 
to include any distributions and corporate actions to give us an adjusted closing 
price. The percent change of adjusted closing prices can then serve as a reason-
able calculation of return.

For example, the closing adjusted price of the well-known S&P 500 market 
index was $1,923.57 for April 2014 and was $1,960.96 for May 2014. So, the 
index’s monthly rate of return for that time period was 

change in price

starting price
5

1,960.96 – 1,923.57

1,923.57
5 0.0194, or 1.94%

Investors want high positive returns, but they also want safety. Since 2000 to 
mid-2014, the S&P 500’s monthly returns have swung to as low as 217% and to as 
high as 111%. The variability of returns, called volatility in finance, is a measure 
of the risk of an investment. A highly volatile stock, which may often go either up 
or down, is more risky than a Treasury bill, whose return is very predictable.

A portfolio is a collection of investments held by an individual or an institu-
tion. Portfolio analysis begins by studying how the risk and return of a portfolio 
are determined by the risk and return of the individual investments it contains. 
That’s where statistics comes in: the return on an investment over some period 
of time is a random variable. We are interested in the mean return, and we 
measure volatility by the standard deviation of returns. Indeed, investment 
firms will report online the historical mean and standard deviation of returns 
of individual stocks or funds.28

Suppose that we are interested in building a simple portfolio based on allo-
cating funds into one of two investments. Let’s take one of the investments 
to be the commonly chosen S&P 500 index. The key now is to pick another 
investment that does not have a high positive correlation with the market index. 
Investing in two investments that have very high positive correlation with each 
other is tantamount to investing in just one.

Possible choices against the S&P 500 index are different asset classes like 
real estate, gold, energy, and utilities. For example, suppose we build a portfo-
lio with 70% of funds invested in the S&P 500 index and 30% in a well-known 
utilities sector fund (XLU). If X is the monthly return on the S&P 500 index 
and Y the monthly return on the utilities fund, the portfolio rate of return is 

R 5 0.7X 1 0.3Y

How can we find the mean and standard deviation of the portfolio return R 
starting from information about X and Y? We must now develop the machinery 
to do this. 
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226	 CHAPTER 4  Probability: The Study of Randomness  

Think first not about investments but about making refrigerators. You are study-
ing flaws in the painted finish of refrigerators made by your firm. Dimples and paint 
sags are two kinds of surface flaw. Not all refrigerators have the same number of 
dimples: many have none, some have one, some two, and so on. You ask for the 
average number of imperfections on a refrigerator. The inspectors report finding an 
average of 0.7 dimple and 1.4 sags per refrigerator. How many total imperfections 
of both kinds (on the average) are there on a refrigerator? That’s easy: if the average 
number of dimples is 0.7 and the average number of sags is 1.4, then counting both 
gives an average of 0.7 1 1.4 5 2.1 flaws.

In more formal language, the number of dimples on a refrigerator is a ran-
dom variable X that varies as we inspect one refrigerator after another. We know 
only that the mean number of dimples is mX 5 0.7. The number of paint sags 
is a second random variable Y having mean mY 5 1.4. (As usual, the subscripts 
keep straight which variable we are talking about.) The total number of both 
dimples and sags is another random variable, the sum X 1 Y. Its mean mX1Y 
is the average number of dimples and sags together. It is just the sum of the 
individual means mX and mY . That’s an important rule for how means of random 
variables behave.

Here’s another rule. A large lot of plastic coffee-can lids has a mean diameter 
of 4.2 inches. What is the mean in centimeters? There are 2.54 centimeters in an 
inch, so the diameter in centimeters of any lid is 2.54 times its diameter in inches. If 
we multiply every observation by 2.54, we also multiply their average by 2.54. The 
mean in centimeters must be 2.54 3 4.2, or about 10.7 centimeters. More formally, 
the diameter in inches of a lid chosen at random from the lot is a random variable X 
with mean mX. The diameter in centimeters is 2.54X, and this new random variable 
has mean 2.54mX.

The point of these examples is that means behave like averages. Here are the 
rules we need.

Rules for Means
Rule 1. If X is a random variable and a and b are fixed numbers, then

ma1bX 5 a 1 bmX

Rule 2. If X and Y are random variables, then

mX1Y 5 mX 1 mY

Rule 3. If X and Y are random variables, then

mX2Y 5 mX 2 mY

EXAMPLE 4.33  Aggregating Demand in a Supply Chain

To remain competitive, companies worldwide are increasingly recognizing the need 
to effectively manage their supply chains. Let us consider a simple but realistic 
supply chain scenario. ElectroWorks is a company that manufactures and distrib-
utes electronic parts to various regions in the United States. To serve the Chicago– 
Milwaukee region, the company has a warehouse in Milwaukee and another in 
Chicago. Because the company produces thousands of parts, it is considering an 
alternative strategy of locating a single, centralized warehouse between the two 
markets—say, in Kenosha, Wisconsin—that will serve all customer orders. Delivery 
time, referred to as lead time, from manufacturing to warehouse(s) and ultimately to 
customers is unaffected by the new strategy.
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To illustrate the implications of the centralized warehouse, let us focus on one 
specific part: SurgeArrester. The lead time for this part from manufacturing to ware-
houses is one week. Based on historical data, the lead time demands for the part in 
each of the markets are Normally distributed with

X 5 Milwaukee warehouse mX 5 415 units sX 5 48 units

Y 5 Chicago warehouse mY 5 2689 units sY 5 272 units 

If the company were to centralize, what would be the mean of the total aggre-
gated lead time demand X 1 Y? Using Rule 2, we can easily find the mean overall 
lead time demand is 

mX1Y 5 mX 1 mY 5 415 1 2689 5 3104

At this stage, we only have part of the picture on the aggregated demand random 
variable—namely, its mean value. In Example 4.39 (pages 232–233), we continue 
our study of aggregated demand to include the variability dimension that, in turn, 
will reveal operational benefits from the proposed strategy of centralizing. Let’s now 
consider the portfolio scenario of Case 4.3 (page 225) to demonstrate the use of a 
combination of the mean rules.

EXAMPLE 4.34  Portfolio Analysis 

CASE 4.3 The past behavior of the two securities in the portfolio is pictured in 
Figure 4.18, which plots the monthly returns for S&P 500 market index against 
the utility sector index from January 2000 to May 2014. We can see that the 
returns on the two indices have a moderate level of positive correlation. This fact 
will be used later for gaining a complete assessment of the expected performance 
of the portfolio. For now, we can calculate mean returns from the 173 data points 
shown on the plot:29

X 5 monthly return for S&P 500 index mX 5 0.298%

Y 5 monthly return for Utility index mY 5 0.675%
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FIGURE 4.18  Monthly returns 
on S&P 500 index versus 
returns on Utilities Sector 
index (January 2000 to May 
2014), Example 4.34.
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228	 CHAPTER 4  Probability: The Study of Randomness  

By combining Rules 1 and 2, we can find the mean return on the portfolio based 
on a 70/30 mix of S&P index shares and utility shares: 

R 5 0.7X 1 0.3Y 
mR 5 0.7mX 1 0.3mY

5 (0.7)(0.298) 1 (0.3)(0.675) 5 0.411%

This calculation uses historical data on returns. Next month may, of course, be very 
different. It is usual in finance to use the term expected return in place of mean return. 

Apply your Knowledge

4.111  Find mY.  The random variable X has mean mX 5 8. If Y 5 12 1 7X, what is 
mY?

4.112  Find mW.  The random variable U has mean mU 5 22, and the random 
variable V has mean mV 5 22. If W 5 0.5U 1 0.5V, find mW.

4.113  Managing a new-product development process.  Managers often have 
to oversee a series of related activities directed to a desired goal or output. As 
a new-product development manager, you are responsible for two sequential 
steps of the product development process—namely, the development of product 
specifications followed by the design of the manufacturing process. Let X be the 
number of weeks required to complete the development of product specifications, 
and let Y be the number of weeks required to complete the design of the manu-
facturing process. Based on experience, you estimate the following probability 
distribution for the first step: 

Weeks (X) 1 2 3

Probability 0.3 0.5 0.2

For the second step, your estimated distribution is 

Weeks (Y) 1 2 3 4 5 

Probability 0.1 0.15 0.4 0.30 0.05

(a) Calculate mX and mY.
(b) The cost per week for the activity of developing product specifications is 
$8000, while the cost per week for the activity of designing the manufacturing 
process is $30,000. Calculate the mean cost for each step.
(c) Calculate the mean completion time and mean cost for the two steps combined.

CASE 4.3 4.114  Mean return on portfolio.  The addition rule for means 
extends to sums of any number of random variables. Let’s look at a portfolio 
containing three mutual funds from three different industrial sectors: biotechnol-
ogy, information services, and defense. The monthly returns on Fidelity Select 
Biotechnology Fund (FBIOX), Fidelity National Information Services Fund 
(FIX), and Fidelity Select Defense and Aerospace Fund (FSDAX) for the  
60 months ending in July 2014 had approximately these means:30

X 5 Biotechnology monthly return mX 5 2.282%  

Y 5 Information services monthly return mY 5 1.669%

Z 5 Defense and aerospace monthly return mZ 5 1.653%

What is the mean monthly return for a portfolio consisting of 50% biotechnol-
ogy, 30% information services, and 20% defense and aerospace?
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4.5  Means and Variances of Random Variables    229

The variance of a random variable
The mean is a measure of the center of a distribution. Another important char-
acteristic of a distribution is its spread. The variance and the standard deviation 
are the standard measures of spread that accompany the choice of the mean to 
measure center. Just as for the mean, we need a distinct symbol to distinguish 
the variance of a random variable from the variance s2 of a data set. We write 
the variance of a random variable X as s

X
2 . Once again, the subscript reminds us 

which variable we have in mind. The definition of the variance s
X
2  of a random 

variable is similar to the definition of the sample variance s2 given in Chapter 1. 
That is, the variance is an average value of the squared deviation (X 2 mX)2 of 
the variable X from its mean mX.

As for the mean of a discrete random variable, we use a weighted average 
of these squared deviations based on the probability of each outcome. Calculating 
this weighted average is straightforward for discrete random variables but requires 
advanced mathematics in the continuous case. Here is the definition.

Variance of a Discrete Random Variable 
Suppose that X is a discrete random variable whose distribution is

Value of X x1 x2 x3
. . .

Probability p1 p2 p3
. . .

and that mX is the mean of X. The variance of X is

sX
2 5 sx12mXd2p1 1 sx22mXd2p2 1 . . .

5 o(xi 2 mX)2pi

The standard deviation sX of X is the square root of the variance.

EXAMPLE 4.35  Find the Mean and the Variance 

CASE 4.2 In Case 4.2 (pages 210–211), we saw that the distribution of the daily 
demand X of transfusion blood bags is

Bags used 0 1 2 3 4 5 6

Probability 0.202 0.159 0.201 0.125 0.088 0.087 0.056

Bags used 7 8 9 10 11 12

Probability 0.025 0.022 0.018 0.008 0.006 0.003

We can find the mean and variance of X by arranging the calculation in the form 
of a table. Both mX and s

X
2  are sums of columns in this table. 

xi pi xi  pi (xi 2 mX)2pi

0 0.202 0.00 (0 2 2.754)2(0.202) 5 1.53207 

1 0.159 0.159 (1 2 2.754)2(0.159) 5 0.48917 

2 0.201 0.402 (2 2 2.754)2(0.201) 5 0.11427 

3 0.125 0.375 (3 2 2.754)2(0.125) 5 0.00756 

4 0.088 0.352 (4 2 2.754)2(0.088) 5 0.13662

5 0.087 0.435 (5 2 2.754)2(0.087) 5 0.43887 

6 0.056 0.336 (6 2 2.754)2(0.056) 5 0.59004 

7 0.025 0.175 (7 2 2.754)2(0.025) 5 0.45071 

(Continued)
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230	 CHAPTER 4  Probability: The Study of Randomness  

xi pi xi  pi (xi 2 mX)2pi

8 0.022 0.176 (8 2 2.754)2(0.022) 5 0.60545 

9 0.018 0.162 (9 2 2.754)2(0.018) 5 0.70223 

10 0.008 0.080 (10 2 2.754)2(0.008) 5 0.42004 

11 0.006 0.066 (11 2 2.754)2(0.006) 5 0.40798 

12 0.003 0.036 (12 2 2.754)2(0.003) 5 0.25647 

mX 5 2.754 s
X
2 5 6.151

We see that sX
2 5 6.151. The standard deviation of X is sX 5 Ï6.151 5 2.48. 

The standard deviation is a measure of the variability of the daily demand of blood 
bags. As in the case of distributions for data, the connection of standard devia-
tion to probability is easiest to understand for Normal distributions (for example, 
68–95–99.7 rule). For general distributions, we are content to understand that the 
standard deviation provides us with a basic measure of variability.

Apply your Knowledge

4.115  Managing new-product development process.  Exercise 4.113  
(page 228) gives the distribution of time to complete two steps in the new-product 
development process.

(a) Calculate the variance and the standard deviation of the number of weeks 
to complete the development of product specifications.
(b) Calculate s

Y
2  and sY for the design of the manufacturing-process step.

Rules for variances and standard deviations
What are the facts for variances that parallel Rules 1, 2, and 3 for means? The mean 
of a sum of random variables is always the sum of their means, but this addition rule 
is true for variances only in special situations. To understand why, take X to be the 
percent of a family’s after-tax income that is spent, and take Y to be the percent that is 
saved. When X increases, Y decreases by the same amount. Though X and Y may vary 
widely from year to year, their sum X 1 Y is always 100% and does not vary at all. It is 
the association between the variables X and Y that prevents their variances from adding.

If random variables are independent, this kind of association between their val-
ues is ruled out and their variances do add. As defined earlier for general events A 
and B (page 205), two random variables X and Y are independent if knowing that 
any event involving X alone did or did not occur tells us nothing about the occur-
rence of any event involving Y alone.

Probability models often assume independence when the random variable out-
comes appear unrelated to each other. You should ask in each instance whether the 
assumption of independence seems reasonable.

When random variables are not independent, the variance of their sum depends 
on the correlation between them as well as on their individual variances. In Chapter 2,  
we met the correlation r between two observed variables measured on the same 
individuals. We defined the correlation r (page 75) as an average of the prod-
ucts of the standardized x and y observations. The correlation between two ran-
dom variables is defined in the same way, once again using a weighted average 
with probabilities as weights in the case of discrete random variables. We won’t 
give the details—it is enough to know that the correlation between two ran-
dom variables has the same basic properties as the correlation r calculated from 
data. We use r, the Greek letter rho, for the correlation between two random 

reminder
68–95–99.7 rule,  

p. 43

correlation
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4.5  Means and Variances of Random Variables    231

variables. The correlation r is a number between 21 and 1 that measures the 
direction and strength of the linear relationship between two variables. The  
correlation between two independent random variables is zero.

Returning to family finances, if X is the percent of a family’s after-tax income 
that is spent and Y is the percent that is saved, then Y 5 100 2 X. This is a perfect 
linear relationship with a negative slope, so the correlation between X and Y is 
r 5 21. With the correlation at hand, we can state the rules for manipulating 
variances.

Rules for Variances and Standard Deviations of Linear Transformations, 
Sums, and Differences
Rule 1.  If X is a random variable and a and b are fixed numbers, then

sa1bX
2 5 b2sX

2

Rule 2. If X and Y are independent random variables, then

sX1Y
2 5 sX

2 1 sY
2

sX2Y
2 5 sX

2 1 sY
2

This is the addition rule for variances of independent random variables.
Rule 3. If X and Y have correlation r, then

sX1Y
2 5 sX

2 1 s2
Y 1 2rsXsY

sX2Y
2 5 sX

2 1 s2
Y  2 2rsXsY

This is the general addition rule for variances of random variables.
To find the standard deviation, take the square root of the variance.

Because a variance is the average of squared deviations from the mean, multi-
plying X by a constant b multiplies s

X
2  by the square of the constant. Adding a con-

stant a to a random variable changes its mean but does not change its variability. The 
variance of X 1 a is, therefore, the same as the variance of X. Because the square of 
21 is 1, the addition rule says that the variance of a difference between independent 
random variables is the sum of the variances. For independent random variables, the 
difference X 2 Y is more variable than either X or Y alone because variations in both 
X and Y contribute to variation in their difference.

As with data, we prefer the standard deviation to the variance as a measure of 
the variability of a random variable. Rule 2 for variances implies that standard devia-
tions of independent random variables do not add. To work with standard deviations, 
use the rules for variances rather than trying to remember separate rules for standard 
deviations. For example, the standard deviations of 2X and 22X are both equal to 
2sX because this is the square root of the variance 4s

X
2 .

EXAMPLE 4.36  Payoff in the Tri-State Pick 3 Lottery

The payoff X of a $1 ticket in the Tri-State Pick 3 game is $500 with probability 
1/1000 and 0 the rest of the time. Here is the combined calculation of mean and 
variance:

xi pi xi pi (xi 2 mX)2pi

0 0.999 0 (0 2 0.5)2(0.999) 5     0.24975

500 0.001 0.5 (500 2 0.5)2(0.001) 5 249.50025

mX 50.5 s
X
2 5 249.75
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232	 CHAPTER 4  Probability: The Study of Randomness  

The mean payoff is 50 cents. The standard deviation is s
X

5 Ï249.75 5 $15.80. 
It is usual for games of chance to have large standard deviations because large variability 
makes gambling exciting. 

If you buy a Pick 3 ticket, your winnings are W 5 X 2 1 because the dollar you 
paid for the ticket must be subtracted from the payoff. Let’s find the mean and vari-
ance for this random variable.

EXAMPLE 4.37  Winnings in the Tri-State Pick 3 Lottery

By the rules for means, the mean amount you win is 

mW 5 mX 2 1 5 2$0.50

That is, you lose an average of 50 cents on a ticket. The rules for variances remind 
us that the variance and standard deviation of the winnings W 5 X 2 1 are the 
same as those of X. Subtracting a fixed number changes the mean but not the 
variance. 

Suppose now that you buy a $1 ticket on each of two different days. The payoffs 
X and Y on the two tickets are independent because separate drawings are held each 
day. Your total payoff is X 1 Y. Let’s find the mean and standard deviation for this 
payoff.

EXAMPLE 4.38  Two Tickets

The mean for the payoff for the two tickets is 

mX1Y 5 mX 1 mY 5 $0.50 1 $0.50 5 $1.00

Because X and Y are independent, the variance of X 1 Y is 

sX1Y
2 5 sX

2 1 sY
2 5 249.75 1 249.75 5 499.5

The standard deviation of the total payoff is 

sX1Y 5 Ï499.5 5 $22.35

This is not the same as the sum of the individual standard deviations, which is 
$15.80 1 $15.80 5 $31.60. Variances of independent random variables add; stan-
dard deviations generally do not. 

When we add random variables that are correlated, we need to use the correla-
tion for the calculation of the variance, but not for the calculation of the mean. Here 
are two examples.

EXAMPLE 4.39  Aggregating Demand in a Supply Chain

In Example 4.33, we learned that the lead time demands for SurgeArresters in two 
markets are Normally distributed with

X 5 Milwaukee warehouse mX 5 415 units sX 5 48 units

Y 5 Chicago warehouse mY 5 2689 units sY 5 272 units

Based on the given means, we found that the mean aggregated demand mX1Y is 
3104. The variance and standard deviation of the aggregated cannot be computed 
from the information given so far. Not surprisingly, demands in the two markets 
are not independent because of the proximity of the regions. Therefore, Rule 2 for 

Moore_4e_CH04_6th_Pass.indd   232 27/08/15   11:00 PM

© 20
16

 W
. H

. F
ree

man
 an

d C
o.



4.5  Means and Variances of Random Variables    233

variances does not apply. We need to know r, the correlation between X and Y, to 
apply Rule 3. Historically, the correlation between Milwaukee demand and Chicago 
demand is about r 5 0.52. To find the variance of the overall demand, we use Rule 3: 

sX1Y
2 5 sX

2 1 sY
2 1 2rsXsY

5 (48)2 1 (272)2 1 (2)(0.52)(48)(272)
5 89,866.24

The variance of the sum X 1 Y is greater than the sum of the variances s
X
2 1 s

Y
2 

because of the positive correlation between the two markets. We find the standard 
deviation from the variance, 

sX1Y 5 Ï89,866.24 5 299.78

Notice that even though the variance of the sum is greater than the sum of the 
variances, the standard deviation of the sum is less than the sum of the standard devia-
tions. Here lies the potential benefit of a centralized warehouse. To protect against 
stockouts, ElectroWorks maintains safety stock for a given product at each warehouse. 
Safety stock is extra stock in hand over and above the mean demand. For example, 
if ElectroWorks has a policy of holding two standard deviations of safety stock, then 
the amount of safety stock (rounded to the nearest integer) at warehouses would be

Location Safety Stock

Milwaukee warehouse 2(48) 5 96 units

Chicago warehouse 2(272) 5 544 units

Centralized warehouse 2(299.78) 5 600 units

The combined safety stock for the Milwaukee and Chicago warehouses is  
640 units, which is 40 more units required than if distribution was operated out of 
a centralized warehouse. Now imagine the implication for safety stock when you 
take into consideration not just one part but thousands of parts that need to be stored.

This example illustrates the important supply chain concept known as risk pooling. 
Many companies such as Walmart and e-commerce retailer Amazon take advantage of 
the benefits of risk pooling as illustrated by this example. 

EXAMPLE 4.40  Portfolio Analysis 

CASE 4.3 Now we can complete our initial analysis of the portfolio constructed on 
a 70/30 mix of S&P 500 index shares and utility sector shares. Based on monthly 
returns between 2000 and 2014, we have 

X 5 monthly return for S&P 500 index mX 5 0.298% sX 5 4.453%

Y 5 monthly return for Utility index mY 5 0.675% sY 5 4.403%

Correlation between X and Y: r 5 0.495

In Example 4.34 (pages 227–228), we found that the mean return R is 0.411%. 
To find the variance of the portfolio return, combine Rules 1 and 3: 

sR
2 5 s0.7X

2 1 s0.3Y
2 1 2rs0.7Xs0.3Y

5 s0.7d2sX
2 1 s0.3d2sY

2 1 2rs0.7 3 sXd s0.3 3 sXd
5 (0.7)2(4.453)2 1 (0.3)2(4.403)2 1 (2)(0.495)(0.7 3 4.453)(0.3 3 4.403)
5 15.54

sR 5 Ï15.54 5 3.942%

risk pooling
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234	 CHAPTER 4  Probability: The Study of Randomness  

We see that portfolio has a smaller mean return than investing all in the utility 
index. However, what is gained is that the portfolio has less variability (or volatility) 
than investing all in one or the other index. 

Example 4.40 illustrates the first step in modern finance, using the mean and 
standard deviation to describe the behavior of a portfolio. We illustrated a particular 
mix (70/30), but what is needed is an exploration of different combinations to seek 
the best construction of the portfolio.

EXAMPLE 4.41  Portfolio Analysis 

CASE 4.3 By doing the mean computations of Example 4.34 (pages 227–228) and 
the standard deviation computations of Example 4.40 for different mixes, we find 
the following values.

S&P 500 proportion mR sR

0.0 0.675 4.403

0.1 0.637 4.201

0.2 0.600 4.038

0.3 0.562 3.919

0.4 0.524 3.848

0.5 0.487 3.828

0.6 0.449 3.860

0.7 0.411 3.942

0.8 0.373 4.071

0.9 0.336 4.243

1.0 0.298 4.453

From Figure 4.19, we see that the plot of the portfolio mean returns against 
the corresponding standard deviations forms a parabola. The point on the parabola 
where the portfolio standard deviation is lowest is the minimum variance portfolio 
(MVP). From the preceding table, we see that the MVP is somewhere near a 50/50 
allocation between the two investments. The solid curve of the parabola provides 
the preferable options in that the expected return is, for a given level of risk, higher 
than the dashed line option.

minimum variance 
portfolio

Standard deviation return
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FIGURE 4.19  Mean return of 
portfolio versus standard  
deviation of portfolio,  
Example 4.41.
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Apply your Knowledge

4.116  Comparing sales.  Tamara and Derek are sales associates in a large electronics 
and appliance store. Their store tracks each associate’s daily sales in dollars. Tamara’s 
sales total X varies from day to day with mean and standard deviation 

mX 5 $1100 and sX 5 $100

Derek’s sales total Y also varies, with 

mY 5 $1000 and sY 5 $80

Because the store is large and Tamara and Derek work in different departments, we 
might assume that their daily sales totals vary independently of each other. What 
are the mean and standard deviation of the difference X 2 Y between Tamara’s 
daily sales and Derek’s daily sales? Tamara sells more on the average. Do you 
think she sells more every day? Why?

4.117  Comparing sales.  It is unlikely that the daily sales of Tamara and Derek 
in the previous problem are uncorrelated. They will both sell more during the 
weekends, for example. Suppose that the correlation between their sales is  
p 5 0.4. Now what are the mean and standard deviation of the difference X 2 Y ?  
Can you explain conceptually why positive correlation between two variables 
reduces the variability of the difference between them?

4.118  Managing new-product development process.  Exercise 4.113 (page 228) 
gives the distributions of X, the number of weeks to complete the development of 
product specifications, and Y, the number of weeks to complete the design of the 
manufacturing process. You did some useful variance calculations in Exercise 4.115 
(page 230). The cost per week for developing product specifications is $8000, while 
the cost per week for designing the manufacturing process is $30,000. 

(a) Calculate the standard deviation of the cost for each of the two activities 
using Rule 1 for variances (page 231).
(b) Assuming the activity times are independent, calculate the standard  
deviation for the total cost of both activities combined.
(c) Assuming r 5 0.8, calculate the standard deviation for the total cost of 
both activities combined.
(d) Assuming r 5 0, calculate the standard deviation for the total cost of both 
activities combined. How does this compare with your result in part (b)? In 
part (c)?
(e) Assuming r 5 20.8, calculate the standard deviation for the total cost of 
both activities combined. How does this compare with your result in part (b)? 
In part (c)? In part (d)?

SECTION 4.5  Summary

•	 The probability distribution of a random variable X, like a distribution of data, has 
a mean mX and a standard deviation sX .

•	 The law of large numbers says that the average of the values of X observed in 
many trials must approach m.

•	 The mean m is the balance point of the probability histogram or density curve. 
If X is discrete with possible values xi having probabilities pi, the mean is the 
average of the values of X, each weighted by its probability: 

mX 5 x1p1 1 x2p2 1 · · ·
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236	 CHAPTER 4  Probability: The Study of Randomness  

•	 The variance s
X
2  is the average squared deviation of the values of the variable  

from their mean. For a discrete random variable, 

sX
2 5 sx1 – mXd2 p1 1 sx2 – mXd2 p2 1 . . .

•	 The standard deviation sX is the square root of the variance. The standard  
deviation measures the variability of the distribution about the mean. It is easiest 
to interpret for Normal distributions.

•	 The mean and variance of a continuous random variable can be computed 
from the density curve, but to do so requires more advanced mathematics.

•	 The means and variances of random variables obey the following rules. If a and 
b are fixed numbers, then 

ma1bX 5 a 1 bmX

sa1bX
2 5 b2sX

2

If X and Y are any two random variables having correlation r, then 

mX1Y 5 mX 1 mY

mX2Y 5 mX 2 mY

sX1Y
2 5 sX

2 1 sY
2 1 2rsXsY

sX2Y
2 5 sX

2 1 sY
2 2 2rsXsY

If X and Y are independent, then r 5 0. In this case, 

sX1Y
2 5 sX

2 1 sY
2

sX 2Y
2 5 sX

2 1 sY
2

SECTION 4.5  Exercises

For Exercise 4.109, see page 220; for 4.110,  
see page 223; for 4.111 to 4.114, see page 228; for 
4.115, see page 230; and for 4.116 to 4.118,  
see page 235.

CASE 4.3 4.119  Portfolio analysis.  Show that if 20% 
of the portfolio is based on the S&P 500 index, then the 
mean and standard deviation of the portfolio are indeed 
the values given in Example 4.41 (page 234).

4.120  Find some means.  Suppose that X is a random 
variable with mean 20 and standard deviation 5. Also 
suppose that Y is a random variable with mean 40 and 
standard deviation 10. Find the mean of the random 
variable Z for each of the following cases. Be sure to 
show your work. 
(a) Z 5 2 1 10X.
(b) Z 5 10X 2 2.
(c) Z 5 X 1 Y.
(d) Z 5 X 2 Y.
(e) Z 5 23X 2 2Y.

4.121  Find the variance and the standard deviation.   
A random variable X has the following distribution.

X 21 0 1 2

Probability 0.3 0.2 0.2 0.3

Find the variance and the standard deviation for this 
random variable. Show your work.

4.122  Find some variances and standard  
deviations.  Suppose that X is a random variable with 
mean 20 and standard deviation 5. Also suppose that 
Y is a random variable with mean 40 and standard 
deviation 10. Assume that X and Y are independent. 
Find the variance and the standard deviation of the 
random variable Z for each of the following cases. Be 
sure to show your work. 
(a) Z 5 2 1 10X.
(b) Z 5 10X 2 2.
(c) Z 5 X 1 Y.
(d) Z 5 X 2 Y.
(e) Z 5 23X 2 2Y.

4.123  What happens if the correlation is not 
zero?  Suppose that X is a random variable with mean 
20 and standard deviation 5. Also suppose that Y is a 
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4.5  Means and Variances of Random Variables    237

random variable with mean 40 and standard deviation 
10. Assume that the correlation between X and Y is 0.5. 
Find the variance and standard deviation of the random 
variable Z for each of the following cases. Be sure to 
show your work. 
(a) Z 5 X 1 Y.
(b) Z 5 X 2 Y.
(c) Z 5 23X 2 2Y.

4.124  What’s wrong?  In each of the following  
scenarios, there is something wrong. Describe what is 
wrong, and give a reason for your answer. 
(a) If you toss a fair coin three times and get heads all 
three times, then the probability of getting a tail on the 
next toss is much greater than one-half. 
(b) If you multiply a random variable by 10, then the 
mean is multiplied by 10 and the variance is multiplied 
by 10. 
(c) When finding the mean of the sum of two random 
variables, you need to know the correlation between 
them.

4.125  Difference between heads and tails.  Suppose 
a fair coin is tossed three times.
(a) Using the labels of “H’’ and “T,’’ list all the possible 
outcomes in the sample space. 
(b) For each outcome in the sample space, define the 
random variable D as the number of heads minus the 
number of tails observed. Use the fact that all outcomes 
of part (a) are equally likely to find the probability 
distribution of D. 
(c) Use the probability distribution found in (b) to find the 
mean and standard deviation of D.

4.126  Mean of the distribution for the number of 
aces.  In Exercise 4.98 (page 217), you examined the 
probability distribution for the number of aces when 
you are dealt two cards in the game of Texas hold ’em.  
Let X represent the number of aces in a randomly 
selected deal of two cards in this game. Here is the 
probability distribution for the random variable X:

Value of X 0 1 2

Probability 0.8507 0.1448 0.0045

Find mX, the mean of the probability distribution of X.

4.127  Standard deviation of the number of 
aces.  Refer to the previous exercise. Find the standard 
deviation of the number of aces.

4.128  Difference between heads and tails.  In Exer-
cise 4.125, the mean and standard deviation were 
computed directly from the probability distribution of 
random variable D. Instead, define X as the number of 

heads in the three flips, and define Y as the number of 
tails in the three flips.
(a) Find the probability distribution for X along with the 
mean mX and standard deviation sX .
(b) Find the probability distribution for Y along with the 
mean mY and standard deviation sY .
(c) Explain why the correlation r between X and Y is 21. 
(d) Define D as X 2 Y. Use the rules of means and 
variances along with r 5 1 to find the mean and standard 
deviation of D. Confirm the values are the same as found 
in Exercise 4.125.

4.129  Pick 3 and law of large numbers.  In Example 
4.28 (pages 219–220), the mean payoff for the Tri-
State Pick 3 lottery was found to be $0.50. In our dis-
cussion of the law of large numbers, we learned that 
the mean of a probability distribution describes the 
long-run average outcome. In this exercise, you will 
explore this concept using technology. 

•	 Excel users: Input the values “0’’ and “500’’ in the 
first two rows of column A. Now input the corre-
sponding probabilities of 0.999 and 0.001 in the first 
two rows of column B. Now choose “Random Num-
ber Generation’’ from the Data Analysis menu box. 
Enter “1’’ in the Number of Variables box, enter 
“20000’’ in the Number of Random Numbers box, 
choose “Discrete’’ for the Distribution option, enter 
the cell range of the X-values and their probabilities 
($A$1:$B$2) in Value and Probability Input Range 
box, and finally select Row 1 of any empty column 
for the Output Range. Click OK to find 20,000 
realizations of X outputted in the worksheet. Using 
Excel’s AVERAGE() function, find the average of the 
20,000 X-values.

•	 JMP users: With a new data table, right-click on 
header of Column 1 and choose Column Info. In the 
drag-down dialog box named Initialize Data, pick 
Random option. Choose the bullet option of Random 
Indicator. Put the values of “0’’ and “500’’ in the first 
two Value dialog boxes, and put the values of 0.999 
and 0.001 in the corresponding Proportion dialog 
boxes. Input the Enter “20000’’ into the Number of 
rows box, and then click OK. Find the average of the 
20,000 X-values.

•	 Minitab users: Input the values “0’’ and “500’’ in the 
first two rows of column 1 (c1). Now input the  
corresponding probabilities of 0.999 and 0.001 in 
the first two rows of column 2 (c2). Do the following 
pull-down sequence: Calc  Random Data    
Discrete. Enter “20000’’ in the Number of rows 
of data to generate box, type “c3’’ in the Store in 
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238	 CHAPTER 4  Probability: The Study of Randomness  

column(s) box, click-in “c1’’ in the Values in box, 
and click-in “c2’’ in the Probabilities in box. Click 
OK to find 20,000 realizations of X outputted in the 
worksheet. Find the average of the 20,000 X-values.

Whether you used Excel, JMP, or Minitab, how does the 
average value of the 20,000 X-values compare with the 
mean reported in Example 4.28?

4.130  Households and families in government data.   
In government data, a household consists of all occupants 
of a dwelling unit, while a family consists of two or 
more persons who live together and are related by blood 
or marriage. So all families form households, but some 
households are not families. Here are the distributions of 
household size and of family size in the United States: 

Number of  
persons 

1 2 3 4 5 6 7

Household  
probability

0.27 0.33 0.16 0.14 0.06 0.03 0.01

Family  
probability 

0.00 0.44 0.22 0.20 0.09 0.03 0.02

Compare the two distributions using probability 
histograms on the same scale. Also compare the two 
distributions using means and standard deviations. Write 
a summary of your comparisons using your calculations 
to back up your statements.

CASE 4.3 4.131  Perfectly negatively correlated 
investments.  Consider the following quote from an 
online site providing investment guidance: “Perfectly 
negatively correlated investments would provide 100% 
diversification, as they would form a portfolio with 
zero variance, which translates to zero risk.’’ Consider 
a portfolio based on two investments (X and Y) with 
standard deviations of sX and sY . In line with the 
quote, assume that the two investments are perfectly 
negatively correlated (r 5 21). 
(a) Suppose sX 5 4, sY 5 2, and the portfolio mix is 
70/30 of X to Y. What is the standard deviation of the 
portfolio? Does the portfolio have zero risk? 
(b) Suppose sX 5 4, sY 5 2, and the portfolio mix is 
50/50. What is the standard deviation of the portfolio? 
Does the portfolio have zero risk? 
(c) Suppose sX 5 4, sY 5 4, and the portfolio mix is 
50/50. What is the standard deviation of the portfolio? 
Does the portfolio have zero risk? 
(d) Is the online quote a universally true statement? If 
not, how would you modify it so that it can be stated that 
the portfolio has zero risk?

4.132  What happens when the correlation is 1?  We 
know that variances add if the random variables 

involved are uncorrelated (r 5 0), but not otherwise. 
The opposite extreme is perfect positive correlation  
(r 5 1). Show by using the general addition rule for 
variances that in this case the standard deviations add. 
That is, sX1Y 5 sX 1 sY if r 5 1.

4.133  Making glassware.  In a process for manufac-
turing glassware, glass stems are sealed by heating 
them in a flame. The temperature of the flame varies. 
Here is the distribution of the temperature X measured 
in degrees Celsius: 

Temperature 540° 545° 550° 555° 560° 

Probability 0.1 0.25 0.3 0.25 0.1

(a) Find the mean temperature mX and the standard 
deviation sX .
(b) The target temperature is 5508C. Use the rules for 
means and variances to find the mean and standard 
deviation of the number of degrees off target, X 2 550.
(c) A manager asks for results in degrees Fahrenheit. The 
conversion of X into degrees Fahrenheit is given by 

Y 5
9

5
 X 1 32

What are the mean mY and standard deviation sY of the 
temperature of the flame in the Fahrenheit scale?

CASE 4.3 Portfolio analysis.  Here are the means, 
standard deviations, and correlations for the monthly 
returns from three Fidelity mutual funds for the 60 
months ending in July 2014. Because there are three 
random variables, there are three correlations. We use 
subscripts to show which pair of random variables a 
correlation refers to. 

X 5 �Biotechnology  
monthly return

mX 5 2.282% sX 5 6.089%

Y 5 �Information services 
monthly return

mY 5 1.669% sY 5 5.882%

Z 5 �Defense and aero-
space monthly return

mZ 5 1.653% sZ 5 4.398%

Correlations 

rXY 5 0.392  rXZ 5 0.613 rYZ 5 0.564

Exercises 4.134 through 4.136 make use of these  
historical data.

CASE 4.3 4.134  Diversification.  Currently, Michael 
is exclusively invested in the Fidelity Biotechnology 
fund. Even though the mean return for this biotechnol-
ogy fund is quite high, it comes with greater volatility 
and risk. So, he decides to diversify his portfolio by 
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constructing a portfolio of 80% biotechnology fund 
and 20% information services fund. Based on the pro-
vided historical performance, what is the expected 
return and standard deviation of the portfolio? Relative 
to his original investment scheme, what is the percent-
age reduction in his risk level (as measured by standard 
deviation) by going to this particular portfolio?

CASE 4.3 4.135  More on diversification.  Continu-
ing with the previous exercise, suppose Michael’s  
primary goal is to seek a portfolio mix of the  
biotechnology and information services funds that will 
give him minimal risk as measured by standard devia-
tion of the portfolio. Compute the standard deviations 
for portfolios based on the proportion of biotechnology 
fund in the portfolio ranging from 0 to 1 in increments 
of 0.1. You may wish to do these calculations in Excel. 
What is your recommended mix of biotechnology and 
information services funds for Michael? What is the 
standard deviation for your recommended portfolio?

CASE 4.3 4.136  Larger portfolios.  Portfolios often 
contain more than two investments. The rules for 
means and variances continue to apply, though the 
arithmetic gets messier. A portfolio containing pro-
portions a of Biotechnology Fund, b of Information 
Services Fund, and c of Defense and Aerospace Fund 
has return R 5 aX 1 bY 1 cZ. Because a, b, and c 
are the proportions invested in the three funds,  
a 1 b 1 c 5 1. The mean and variance of the portfo-
lio return R are 

mR 5 amX 1 bmY 1 cmZ

sR
2 5 a2sX

2 1 b2sY
2 1 c2sZ

2 1 2abrXYsXsY

1 2acrXZsXsZ1 2bcrYZsYsZ

Having seen the advantages of diversification, Michael 
decides to invest his funds 20% in biotechnology, 35% in 
information services, and 45% in defense and aerospace. 
What are the (historical) mean and standard deviation of 
the monthly returns for this portfolio? 

Chapter 4  Review Exercises 

4.137  Using probability rules.  Let P(A) 5 0.7,  
P(B) 5 0.6, and P(C) 5 0.2. 
(a) Explain why it is not possible that events A and B can 
be disjoint. 
(b) What is the smallest possible value for P(A and B)? 
What is the largest possible value for P(A and B)? It might 
be helpful to draw a Venn diagram.
(c) If events A and C are independent, what is P(A or C)?

4.138  Work with a transformation.  Here is a prob-
ability distribution for a random variable X: 

Value of X 1 2

Probability 0.4 0.6

(a) Find the mean and the standard deviation of this 
distribution. 
(b) Let Y 5 4X 22. Use the rules for means and 
variances to find the mean and the standard deviation of 
the distribution of Y.
(c) For part (b), give the rules that you used to find your 
answer.

4.139  A different transformation.  Refer to the previous 
exercise. Now let Y 5 4X2 22. 
(a) Find the distribution of Y. 
(b) Find the mean and standard deviation for the 
distribution of Y. 

(c) Explain why the rules that you used for part (b) of the 
previous exercise do not work for this transformation.

4.140  Roll a pair of dice two times.  Consider rolling 
a pair of fair dice two times. For a given roll, consider 
the total on the up-faces. For each of the following 
pairs of events, tell whether they are disjoint, indepen-
dent, or neither. 
(a) A 5 2 on the first roll, B 5 8 or more on the first roll.
(b) A 5 2 on the first roll, B 5 8 or more on the second roll.
(c) A 5 5 or less on the second roll, B 5 4 or less on the 
first roll.
(d) A 5 5 or less on the second roll, B 5 4 or less on the 
second roll.

4.141  Find the probabilities.  Refer to the previous 
exercise. Find the probabilities for each event.

4.142  Some probability distributions.  Here is a 
probability distribution for a random variable X:

Value of X 2 3 4

Probability 0.2 0.4 0.4

(a) Find the mean and standard deviation for this distribution.
(b) Construct a different probability distribution with 
the same possible values, the same mean, and a larger 
standard deviation. Show your work and report the 
standard deviation of your new distribution. 
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(c) Construct a different probability distribution with 
the same possible values, the same mean, and a smaller 
standard deviation. Show your work and report the 
standard deviation of your new distribution.

4.143  Wine tasters.  Two wine tasters rate each wine 
they taste on a scale of 1 to 5. From data on their rat-
ings of a large number of wines, we obtain the follow-
ing probabilities for both tasters’ ratings of a randomly 
chosen wine:

Taster 2

Taster 1 1 2 3 4 5

1 0.03 0.02 0.01 0.00 0.00

2 0.02 0.07 0.06 0.02 0.01

3 0.01 0.05 0.25 0.05 0.01

4 0.00 0.02 0.05 0.20 0.02

5 0.00 0.01 0.01 0.02 0.06

(a) Why is this a legitimate assignment of probabilities to 
outcomes? 
(b) What is the probability that the tasters agree when 
rating a wine? 
(c) What is the probability that Taster 1 rates a wine 
higher than 3? What is the probability that Taster 2 rates 
a wine higher than 3?

4.144  Slot machines.  Slot machines are now video 
games, with winning determined by electronic random 
number generators. In the old days, slot machines were 
like this: you pull the lever to spin three wheels; each 
wheel has 20 symbols, all equally likely to show when 
the wheel stops spinning; the three wheels are indepen-
dent of each other. Suppose that the middle wheel has 
eight bells among its 20 symbols, and the left and right 
wheels have one bell each.
(a) You win the jackpot if all three wheels show bells. 
What is the probability of winning the jackpot? 
(b) What is the probability that the wheels stop with 
exactly two bells showing?

4.145  Bachelor’s degrees by gender.  Of the 
2,325,000 bachelor’s, master’s, and doctoral degrees 
given by U.S. colleges and universities in a recent 
year, 69% were bachelor’s degrees, 28% were mas-
ter’s degrees, and the rest were doctorates. Moreover, 
women earned 57% of the bachelor’s degrees, 60% of 
the master’s degrees, and 52% of the doctorates.31 You 
choose a degree at random and find that it was awarded 
to a woman. What is the probability that it is a bach-
elor’s degree?

4.146  Higher education at two-year and four-year 
institutions.  The following table gives the counts of 

U.S. institutions of higher education classified as pub-
lic or private and as two-year or four-year:32

Public Private

Two-year 1000 721

Four-year 2774 672

Convert the counts to probabilities, and summarize 
the relationship between these two variables using 
conditional probabilities.

4.147  Wine tasting.  In the setting of Exercise 4.143, 
Taster 1’s rating for a wine is 3. What is the conditional 
probability that Taster 2’s rating is higher than 3?

4.148  An interesting case of independence.   
Independence of events is not always obvious. Toss 
two balanced coins independently. The four possible 
combinations of heads and tails in order each have 
probability 0.25. The events 

A 5 head on the first toss
B 5 both tosses have the same outcome

may seem intuitively related. Show that P(B u A) 5 P(B) 
so that A and B are, in fact, independent.

4.149  Find some conditional probabilities.  Choose 
a point at random in the square with sides 0 # x # 1 
and 0 # y # 1. This means that the probability that the 
point falls in any region within the square is the area of 
that region. Let X be the x coordinate and Y the y coor-
dinate of the point chosen. Find the conditional prob-
ability P(Y , 1/3 u Y . X). (Hint: Sketch the square 
and the events Y , 1/3 and Y . X.)

4.150  Sample surveys for sensitive issues.  It is dif-
ficult to conduct sample surveys on sensitive issues 
because many people will not answer questions if 
the answers might embarrass them. Randomized 
response is an effective way to guarantee anonymity 
while collecting information on topics such as student 
cheating or sexual behavior. Here is the idea. To ask 
a sample of students whether they have plagiarized a 
term paper while in college, have each student toss a 
coin in private. If the coin lands heads and they have 
not plagiarized, they are to answer No. Otherwise, 
they are to give Yes as their answer. Only the student 
knows whether the answer reflects the truth or just the 
coin toss, but the researchers can use a proper random 
sample with follow-up for nonresponse and other good 
sampling practices.

Suppose that, in fact, the probability is 0.3 that 
a randomly chosen student has plagiarized a paper. 
Draw a tree diagram in which the first stage is tossing 
the coin and the second is the truth about plagiarism. 
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The outcome at the end of each branch is the answer 
given to the randomized-response question. What is 
the probability of a No answer in the randomized-
response poll? If the probability of plagiarism were 0.2, 
what would be the probability of a No response on the 
poll? Now suppose that you get 39% No answers in a 
randomized-response poll of a large sample of students 
at your college. What do you estimate to be the percent 
of the population who have plagiarized a paper?

CASE 4.2 4.151  Blood bag demand.  Refer to the 
distribution of daily demand for blood bags X in  
Case 4.2 (pages 210–211). Assume that demand is 
independent from day to day. 
(a) What is the probability at least one bag will be 
demanded every day of a given month? Assume 30 days 
in the month.
(b) What is the interpretation of one minus the probability 
found part (a)? 
(c) What is the probability that the bank will go a whole 
year (365 days) without experiencing a demand of  
12 bags on a given day?

4.152  Risk pooling in a supply chain.  Example 4.39 
(pages 232–233) compares a decentralized versus a 
centralized inventory system as it ultimately relates to 
the amount of safety stock (extra inventory over and 
above mean demand) held in the system. Suppose that 
the CEO of ElectroWorks requires a 99% customer 
service level. This means that the probability of satis-
fying customer demand during the lead time is 0.99. 
Assume that lead time demands for the Milwaukee 
warehouse, Chicago warehouse, and centralized ware-
house are Normally distributed with the means and 
standard deviations found in the example. 
(a) For a 99% service level, how much safety stock of  
the part SurgeArrester does the Milwaukee warehouse 
need to hold? Round your answer to the nearest integer. 
(b) For a 99% service level, how much safety stock of 
the part SurgeArrester does the Chicago warehouse need 
to hold? Round your answer to the nearest integer. 
(c) For a 99% service level, how much safety stock of 
the part SurgeArrester does the centralized warehouse 
need to hold? Round your answer to the nearest integer. 
How many more units of the part need to be held in the 
decentralized system than in the centralized system?

4.153  Life insurance.  Assume that a 25-year-old 
man has these probabilities of dying during the next 
five years:

Age at 
death 25 26 27 28 29

Probability 0.00039 0.00044 0.00051 0.00057 0.00060

(a) What is the probability that the man does not die in 
the next five years? 
(b) An online insurance site offers a term insurance 
policy that will pay $100,000 if a 25-year-old man  
dies within the next five years. The cost is $175 per 
year. So the insurance company will take in $875 from 
this policy if the man does not die within five years. 
If he does die, the company must pay $100,000. Its 
loss depends on how many premiums the man paid, as 
follows: 

Age at 
death 25 26 27 28 29

Loss $99,825 $99,650 $99,475 $99,300 $99,125

What is the insurance company’s mean cash intake 
(income) from such polices?

4.154  Risk for one versus many life insurance  
policies.  It would be quite risky for an insurance 
company to insure the life of only one 25-year-old 
man under the terms of Exercise 4.153. There is a high 
probability that person would live and the company 
would gain $875 in premiums. But if he were to die, 
the company would lose almost $100,000. We have 
seen that the risk of an investment is often measured by 
the standard deviation of the return on the investment. 
The more variable the return is (the larger s is), the 
riskier the investment. 
(a) Suppose only one person’s life is insured. Compute 
standard deviation of the income X that the insurer will 
receive. Find sX, using the distribution and mean you 
found in Exercise 4.153. 
(b) Suppose that the insurance company insures two 
men. Define the total income as T 5 X1 1 X2 where 
Xi is the income made from man i. Find the mean and 
standard deviation of T. 
(c) You should have found that the standard deviation 
computed in part (b) is greater than that found in  
part (a). But this does not necessarily imply that insuring 
two people is riskier than insuring one person. What 
needs to be recognized is that the mean income has also 
gone up. So, to measure the riskiness of each scenario 
we need to scale the standard deviation values relative 
to the mean values. This is simply done by computing 
s/m, which is called the coefficient of variation (CV). 
Compute the coefficients of variation for insuring one 
person and for insuring two people. What do the CV 
values suggest about the relative riskiness of the two 
scenarios?
(d) Compute the mean total income, standard deviation 
of total income, and the CV of total income when  
30 people are insured. 
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(e) Compute the mean total income, standard deviation 
of total income, and the CV of total income when 1000 
people are insured. 
(f) There is a remarkable result in probability theory that 
states that the sum of a large number of independent 
random variables follows approximately the Normal 
distribution even if the random variables themselves are 

not Normal. In most cases, 30 is sufficiently “large.’’ 
Given this fact, use the mean and standard deviation from 
part (d) to compute the probability that the insurance 
company will lose money from insuring 30 people—that 
is, compute P(T , 0). Compute now the probability of a 
loss to the company if 1000 people are insured. What did 
you learn from these probability computations?

Moore_4e_CH04_6th_Pass.indd   242 27/08/15   11:00 PM

© 20
16

 W
. H

. F
ree

man
 an

d C
o.




