Ionic and hydrated radii of several ions. Smaller, more highly charged ions bind water molecules more tightly and behave as larger hydrated species.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Tightly bound H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CH$_2$CH$_3$</td>
<td>0</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>0</td>
</tr>
<tr>
<td>CH$_3$CH$_2$Cl</td>
<td>0</td>
</tr>
<tr>
<td>CH$_3$CH$_2$SH</td>
<td>0</td>
</tr>
<tr>
<td>CH$_3$—O—CH$_3$</td>
<td>1</td>
</tr>
<tr>
<td>CH$_3$CH$_2$OH</td>
<td>1</td>
</tr>
<tr>
<td>(CH$_3$)$_2$C = O</td>
<td>1.5</td>
</tr>
<tr>
<td>CH$_2$CH = O</td>
<td>1.5</td>
</tr>
<tr>
<td>CH$_3$CO$_2$H</td>
<td>2</td>
</tr>
<tr>
<td>CH$_2$C = N</td>
<td>3</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>CH$_2$CNHCH$_3$</td>
<td>4</td>
</tr>
<tr>
<td>CH$_3$NO$_2$</td>
<td>5</td>
</tr>
<tr>
<td>CH$_3$CO$_2$</td>
<td>5</td>
</tr>
<tr>
<td>CH$_2$NH$_2$</td>
<td>6</td>
</tr>
<tr>
<td>CH$_2$SO$_2$H</td>
<td>7</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>9</td>
</tr>
<tr>
<td>CH$_3$SO$_3$</td>
<td>10</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>12</td>
</tr>
</tbody>
</table>

Estimated Number of Waters of Hydration

Ions and molecules in solution are surrounded by an organized sheath of solvent molecules. The oxygen atom of H$_2$O has a partial negative charge and each hydrogen atom has half as much positive charge.

Water binds to cations through the oxygen atom. The first coordination sphere of the small cation Li$^+$ is composed of ~4 H$_2$O molecules at the corners of a tetrahedron. The first coordination sphere of the larger ion Cl$^{3+}$ (element 98, californium) appears to be a square antiprism with ~8 H$_2$O molecules. Cl$^-$ binds ~6 H$_2$O molecules through hydrogen atoms. H$_2$O exchanges rapidly between bulk solvent and ion-coordination sites.

Ionic radii in the chart above are measured by X-ray diffraction of ions in crystals. Hydrated radii are estimated from diffusion coefficients of ions in solution and from the mobilities of aqueous ions in an electric field. Smaller, more highly charged ions bind more water molecules and behave as larger species in solution. The activity of aqueous ions, which we study in this chapter, is related to the size of the hydrated species.
In Chapter 6, we wrote the equilibrium constant for a reaction in the form

\[\text{Fe}^{3+} + \text{SCN}^- \rightleftharpoons \text{Fe(SCN)}^{2+} \quad K = \frac{[\text{Fe(SCN)}^{2+}]}{[\text{Fe}^{3+}][\text{SCN}^-]} \]

(8-1)

Figure 8-1, Demonstration 8-1, and Color Plate 4 show that the concentration quotient of Equation 8-1 decreases if you add the “inert” salt KNO₃ to the solution. That is, the equilibrium “constant” is not really constant. This chapter explains why concentrations are replaced by activities in the equilibrium constant and how activities are used.

8-1 The Effect of Ionic Strength on Solubility of Salts

Consider a saturated solution of CaSO₄ in distilled water.

\[\text{CaSO}_4(s) \rightleftharpoons \text{Ca}^{2+} + \text{SO}_4^{2-} \quad K_{sp} = 2.4 \times 10^{-5} \]

(8-2)

Figure 6-1 showed that the solubility is 0.015 M. The dissolved species are mainly 0.010 M Ca²⁺, 0.010 M SO₄²⁻, and 0.005 M CaSO₄(aq) (an ion pair).

Now an interesting effect is observed when a salt such as KNO₃ is added to the solution. Neither K⁺ nor NO₃⁻ reacts with Ca²⁺ or SO₄²⁻. Yet, when 0.050 M KNO₃ is added to the saturated solution of CaSO₄, more solid dissolves until the concentrations of Ca²⁺ and SO₄²⁻ have increased by about 30%.

In general, adding an “inert” salt (KNO₃) to a sparingly soluble salt (CaSO₄) increases the solubility of the sparingly soluble salt. “Inert” means that KNO₃ has no chemical reaction with CaSO₄. When we add salt to a solution, we say that the ionic strength of the solution increases. The definition of ionic strength will be given shortly.

The Explanation

Why does the solubility increase when salts are added to the solution? Consider one particular Ca²⁺ ion and one particular SO₄²⁻ ion in solution. The SO₄²⁻ ion is surrounded by H₂O by cations (K⁺, Ca²⁺), and by anions (NO₃⁻, SO₄²⁻). However, an anion will be surrounded by more cations than anions because cations are attracted to the anion, but anions are repelled. These interactions create a region of net positive charge around any particular anion. We call this region the **ionic atmosphere** (Figure 8-2). Ions continually diffuse into and out of the ionic atmosphere. The net charge in the atmosphere, averaged over time, is less than the charge of the anion at the center. Similarly, an atmosphere of negative charge surrounds any cation in solution.

The ionic atmosphere attenuates (decreases) the attraction between ions. The cation plus its negative atmosphere has less positive charge than the cation alone. The anion plus its ionic atmosphere has less negative charge than the anion alone. The net attraction between the cation with its ionic atmosphere and the anion with its ionic atmosphere is smaller than it would be between pure cation and anion in the absence of ionic atmospheres. The greater the ionic strength of a solution, the higher the charge in the ionic atmosphere. Each ion-plus- atmosphere contains less net charge, so there is less attraction between any particular cation and anion.

DEMONSTRATION 8-1 Effect of Ionic Strength on Ion Dissociation

This experiment demonstrates the effect of ionic strength on the dissociation of the red iron(III) thiocyanate complex:

\[\text{Fe(SCN)}^{2+} \quad \text{Pale yellow} \quad \text{Red} \]

Prepare a solution of 1 mM FeCl₃ by dissolving 0.27 g of FeCl₃·6H₂O in 1 L of water containing 3 drops of 15 M (concentrated) HNO₃. Acid slows the precipitation of Fe(OH)₃, which occurs within a few days and necessitates the preparation of fresh solution for this demonstration.

To demonstrate the effect of ionic strength on the dissociation reaction, mix 300 mL of 1 mM FeCl₃ with 300 mL of 1.5 mM NH₄SCN or KSCN. Divide the pale red solution into two equal portions and add 12 g of KNO₃ to one of them to increase the ionic strength to 0.4 M. As KNO₃ dissolves, the red Fe(SCN)²⁺ complex dissociates and the color fades (Color Plate 4).

Add a few crystals of NH₄SCN or KSCN to either solution to drive the reaction toward formation of Fe(SCN)²⁺, thereby intensifying the red color. This reaction demonstrates Le Châtelier’s principle — adding a product creates more reactant.
Increasing ionic strength reduces the attraction between any particular \(\text{Ca}^{2+} \) and any \(\text{SO}_4^{2-} \), relative to their attraction for each other in distilled water. The effect is to reduce their tendency to come together, thereby increasing the solubility of \(\text{CaSO}_4 \).

Increasing ionic strength promotes dissociation into ions. Thus, each of the following reactions is driven to the right if the ionic strength is raised from, say, 0.01 to 0.1 M:

\[
\begin{align*}
\text{Fe(SCN)}^2+ &\rightleftharpoons \text{Fe}^{3+} + \text{SCN}^- \\
\text{HO\|OH} &\rightleftharpoons \text{HO}^- + \text{H}^+ \\
\text{HO}_2\text{CCHCHCO}_2\text{K(s)} &\rightleftharpoons \text{HO}_2\text{CCHCHCO}_2^- + \text{K}^+
\end{align*}
\]

Potassium hydrogen tartrate

Figure 8-3 shows the effect of added salt on the solubility of potassium hydrogen tartrate.

What Do We Mean by “Ionic Strength”?

Ionic strength, \(\mu \), is a measure of the total concentration of ions in solution. The more highly charged an ion, the more it is counted.

Ionic strength:

\[
\mu = \frac{1}{2} (c_1z_1^2 + c_2z_2^2 + \cdots) = \frac{1}{2} \sum c_i z_i^2
\]

(8-3)

where \(c_i \) is the concentration of the \(i \)th species and \(z_i \) is its charge. The sum extends over all ions in solution.

EXAMPLE | Calculation of Ionic Strength

Find the ionic strength of (a) 0.10 M NaNO\(_3\); (b) 0.010 M Na\(_2\)SO\(_4\); and (c) 0.020 M KBr plus 0.010 M Na\(_2\)SO\(_4\).

Solution

(a) \(\mu = \frac{1}{2} ([\text{Na}^+ \cdot (1) + [\text{NO}_3^- \cdot (1) - (1)]^2
\]

\[
= \frac{1}{2} (0.10 \cdot 1 = 0.10 \text{ M})
\]

(b) \(\mu = \frac{1}{2} ([\text{Na}^+ \cdot (1) + [\text{SO}_4^{2-} \cdot (2)] - (2)]^2
\]

\[
= \frac{1}{2} (0.020 \cdot 1 + 0.010 \cdot 4) = 0.030 \text{ M}
\]

Note that \([\text{Na}^+] = 0.020 \text{ M} \) because there are two moles of Na\(^+\) per mole of Na\(_2\)SO\(_4\).

(c) \(\mu = \frac{1}{2} ([\text{K}^+ \cdot (1) + [\text{Br}^- \cdot (1) \cdot (1)]^2 + [\text{Na}^+ \cdot (1) + [\text{Na}^+ \cdot (1) + [\text{SO}_4^{2-} \cdot (2)] - (2)]^2
\]

\[
= \frac{1}{2} ([0.020 \cdot 1 + 0.020 \cdot 1 + 0.020 \cdot 1 + 0.010 \cdot 4] = 0.050 \text{ M}
\]

TEST YOURSELF What is the ionic strength of 1 mM CaCl\(_2\)? *(Answer: 3 mM)*

NaNO\(_3\) is called a 1:1 electrolyte because the cation and the anion both have a charge of 1. For 1:1 electrolytes, ionic strength equals molarity. For other stoichiometries (such as the 2:1 electrolyte Na\(_2\)SO\(_4\)), ionic strength is greater than molarity.

Computing the ionic strength of any but the most dilute solutions is complicated because salts with ions of charge \(\geq 2 \) are not fully dissociated. In Box 8-1 we find that, at a formal concentration of 0.025 M MgSO\(_4\), 35% of Mg\(^{2+}\) is bound in the ion pair, MgSO\(_4\) (aq). The higher the concentration and the higher the ionic charge, the more the ion pairing. Ion pairing is ubiquitous in chemistry. Box 8-2 shows how ion pairing can be employed to extract and identify ionic metabolites from single live cells.
8-2 Activity Coefficients

Equation 8-1 does not predict any effect of ionic strength on a chemical reaction. To account for the effect of ionic strength, concentrations are replaced by activities:

\[
A_C = \gamma_C [C]
\]

(8-4)

The activity of species C is its concentration multiplied by its activity coefficient. The activity coefficient measures the deviation of behavior from ideality. If the activity coefficient were 1, then the behavior would be ideal and the equilibrium constant in Equation 8-1 would be correct.

Activity is a dimensionless quantity. Recall from Section 6-1 that [C] is really the dimensionless ratio of concentration divided by the concentration of the standard state. [C] in Equation 8-4 really means \([C]/(1 \text{ M})\) if C is a solute or (pressure of C in bars)/(1 bar) if C is a gas. The activity of a pure solid or liquid is, by definition, unity.
The correct form of the equilibrium constant is

\[
K = \frac{[\text{Product}]}{[\text{Reactants}]} = \frac{[\text{Ca}^{2+}] [\text{Cl}^{-}]^2}{[\text{CaCl}_2] (\text{aq})}
\]

Equation 8-5 allows for the effect of ionic strength on a chemical equilibrium because the activity coefficients depend on ionic strength.

For Reaction 8-2, the equilibrium constant is

\[
K_{\text{sp}} = \frac{[\text{Ca}^{2+}] [\text{Cl}^{-}]^2}{[\text{CaCl}_2] (\text{aq})} = [\text{Ca}^{2+}] [\text{Cl}^{-}]^2 [\text{SO}_4^{2-}] [\text{SO}_4^{2-}]
\]

If the concentrations of \(\text{Ca}^{2+} \) and \(\text{SO}_4^{2-} \) are to increase when a second salt is added to increase ionic strength, the activity coefficients must decrease with increasing ionic strength.

At low ionic strength, activity coefficients approach unity, and the thermodynamic equilibrium constant (8-5) approaches the "concentration" equilibrium constant (6-2). One way to measure a thermodynamic equilibrium constant is to measure the concentration ratio (6-2) at successively lower ionic strengths and extrapolate to zero ionic strength. Commonly, tabulated equilibrium constants are not thermodynamic constants but just the concentration ratio (6-2) measured under a particular set of conditions.

EXAMPLE Exponents of Activity Coefficients

Write the solubility product expression for \(\text{La}_2(\text{SO}_4)_3(\text{s}) = 2\text{La}^{3+} + 3\text{SO}_4^{2-} \) with activity coefficients.

Solution Exponents of activity coefficients are the same as exponents of concentrations:

\[
K_{\text{sp}} = \frac{[\text{La}^{3+}]^2 [\text{SO}_4^{2-}]^3}{[\text{La}_2(\text{SO}_4)_3] (\text{s})}
\]

TEST YOURSELF Write the equilibrium expression for \(\text{Ca}^{2+} + 2\text{Cl}^- \rightleftharpoons \text{CaCl}_2(aq) \) with activity coefficients.

\[
K = \frac{[\text{Ca}^{2+}] [\text{Cl}^{-}]^2}{[\text{CaCl}_2] (\text{aq})} = \frac{[\text{Ca}^{2+}] [\text{Cl}^{-}]^2 [\text{Ca}^{2+}] [\text{Cl}^{-}]^2}{[\text{CaCl}_2] (\text{aq})}
\]

Activity Coefficients of Ions

The ionic atmosphere model leads to the extended Debye-Hückel equation, relating activity coefficients to ionic strength:

\[
\log \gamma = \frac{-0.51z^2 \sqrt{\mu}}{1 + (\alpha \sqrt{\mu}/305)} \quad \text{(at } 25^\circ \text{C)}
\]

In Equation 8-6, \(\gamma \) is the activity coefficient of an ion of charge \(\pm \) and size \(\alpha \) (picometers, pm) in an aqueous solution of ionic strength \(\mu \). The equation works fairly well for \(\mu \leq 0.1 \) M. To find activity coefficients for ionic strengths above 0.1 M (up to molalities of 2–6 mol/kg for many salts), more complicated Pitzer equations are usually used.\(^8\)

Table 8-1 lists sizes \(\alpha \) and activity coefficients of many ions. All ions of the same size and charge appear in the same group and have the same activity coefficients. For example, \(\text{Ba}^{2+} \) and succinate ion \([\text{O}_2\text{CCH}_2\text{CH}_2\text{CO}_2^-] \), listed as \((\text{CH}_2\text{CO}_2)_2 \) each have a size of 500 pm and are listed among the charge \(\pm 2 \) ions. At an ionic strength of 0.001 M, both of these ions have an activity coefficient of 0.868.

The ion size \(\alpha \) in Equation 8-6 is an empirical parameter that provides agreement between measured activity coefficients and ionic strength up to \(\mu \approx 0.1 \) M. In theory, \(\alpha \) is the diameter of the hydrated ion.\(^7\) However, sizes in Table 8-1 cannot be taken literally. For example, the diameter of \(\text{Cs}^+ \) ion in crystals is 340 pm. The hydrated \(\text{Cs}^+ \) ion must be larger than the ion in the crystal, but the size of \(\text{Cs}^+ \) in Table 8-1 is only 250 pm.

Even though ion sizes in Table 8-1 are empirical parameters, trends among sizes are sensible. Small, highly charged ions bind solvent more tightly and have larger effective sizes than do larger or less highly charged ions. For example, the order of sizes in Table 8-1 is \(\text{Li}^+ > \text{Na}^+ > \text{K}^+ > \text{Rb}^+ \), even though crystallographic radii are \(\text{Li}^+ < \text{Na}^+ < \text{K}^+ < \text{Rb}^+ \).
TABLE 8-1
Activity coefficients for aqueous solutions at 25°C

<table>
<thead>
<tr>
<th>Ion size (α, pm)</th>
<th>Ionic strength (μ, M)</th>
<th>Ionic strength (μ, M)</th>
<th>Ionic strength (μ, M)</th>
<th>Ionic strength (μ, M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.001</td>
<td>0.005</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Charge = ±1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H+</td>
<td>900</td>
<td>0.967</td>
<td>0.933</td>
<td>0.914</td>
</tr>
<tr>
<td>(C₆H₅)₂CHCO₂⁻, (C₆H₅)₃N⁻</td>
<td>800</td>
<td>0.966</td>
<td>0.931</td>
<td>0.912</td>
</tr>
<tr>
<td>(O₂N)₂C₆H₅O⁻, (C₆H₅)₂NH⁺, CH₃OC₆H₄CO₂⁻</td>
<td>700</td>
<td>0.965</td>
<td>0.930</td>
<td>0.909</td>
</tr>
<tr>
<td>Li⁺, C₆H₅CO₂⁻, HOC₆H₄CO₂⁻, C₆H₅H₂CO₂⁻, C₆H₅CH₂CO₂⁻, C₆H₅CH₂CH₂CO₂⁻, C₆H₅CH₃CO₂⁻</td>
<td>600</td>
<td>0.965</td>
<td>0.929</td>
<td>0.907</td>
</tr>
<tr>
<td>Cl₂CHCO₂⁻, Cl⁺,CCO₂⁻, (C₆H₅CH₂)NH⁺, (C₆H₅)NH⁺,</td>
<td>500</td>
<td>0.964</td>
<td>0.928</td>
<td>0.904</td>
</tr>
<tr>
<td>Na⁺, CdCl₂⁻, ClO₂⁻, IO⁻, HCO₂⁻, H₂PO₂⁻, HSO₃⁻, H₂AsO₃⁻,</td>
<td>450</td>
<td>0.964</td>
<td>0.928</td>
<td>0.902</td>
</tr>
<tr>
<td>(C₆H₅)₂NH⁺, (C₆H₅)₂NH⁺, (C₆H₅)₂NH⁺</td>
<td>400</td>
<td>0.964</td>
<td>0.927</td>
<td>0.901</td>
</tr>
<tr>
<td>Charge = ±2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg²⁺, Be²⁺</td>
<td>800</td>
<td>0.872</td>
<td>0.755</td>
<td>0.69</td>
</tr>
<tr>
<td>CH₃(CH₂CO₂⁻)₂, (C₆H₅CH₂CO₂⁻)₂</td>
<td>700</td>
<td>0.872</td>
<td>0.755</td>
<td>0.685</td>
</tr>
<tr>
<td>Ca²⁺, Cu²⁺, Zn²⁺, Sn²⁺, Mn²⁺, Fe²⁺, Ni²⁺, Co²⁺, C₆H₅(CO₂⁻)₂,</td>
<td>600</td>
<td>0.870</td>
<td>0.749</td>
<td>0.675</td>
</tr>
<tr>
<td>H₂C(CH₂CO₂⁻)₂, (C₆H₅CH₂CO₂⁻)₂</td>
<td>500</td>
<td>0.868</td>
<td>0.744</td>
<td>0.67</td>
</tr>
<tr>
<td>Sr²⁺, Ba²⁺, Cu²⁺, Hg⁺⁺, S²⁻, S₂O³⁻, WO₄²⁻, H₂C(CO₂⁻)₂, (C₆H₅CO₂⁻)₂, (CHOHCO₂⁻)₂</td>
<td>450</td>
<td>0.867</td>
<td>0.742</td>
<td>0.665</td>
</tr>
<tr>
<td>Pb²⁺, CO₃⁻, SO₄²⁻, MoO₃⁻, Co(NH₃)₆Cl⁺⁻, Fe(CN)₆NO₂⁻, C₂O₄²⁻, Hcitrato⁻²</td>
<td>400</td>
<td>0.867</td>
<td>0.740</td>
<td>0.660</td>
</tr>
<tr>
<td>Charge = ±3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al³⁺, Fe³⁺, Cr³⁺, Sc³⁺, Y³⁺, In³⁺, lanthanides</td>
<td>900</td>
<td>0.738</td>
<td>0.54</td>
<td>0.445</td>
</tr>
<tr>
<td>citrate⁻³</td>
<td>500</td>
<td>0.728</td>
<td>0.51</td>
<td>0.405</td>
</tr>
<tr>
<td>PO₄³⁻, Fe(CN)₆³⁻, Cr(NH₃)₆³⁻, Co(NH₃)₆³⁻, Co(NH₃)₆H₂O₃⁻</td>
<td>400</td>
<td>0.725</td>
<td>0.505</td>
<td>0.395</td>
</tr>
<tr>
<td>Charge = ±4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th⁴⁺, Zr⁴⁺, Ce⁴⁺, Sn⁴⁺</td>
<td>1100</td>
<td>0.588</td>
<td>0.35</td>
<td>0.255</td>
</tr>
<tr>
<td>Fe(CN)₆⁴⁻</td>
<td>500</td>
<td>0.57</td>
<td>0.31</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Effect of Ionic Strength, Ion Charge, and Ion Size on the Activity Coefficient

Over the range of ionic strengths from 0 to 0.1 M, the effect of each variable on activity coefficients is as follows:

1. **As ionic strength increases**, the activity coefficient decreases (Figure 8-4). The activity coefficient (γ) approaches unity as the ionic strength (μ) approaches 0.

2. **As the magnitude of the charge of the ion increases**, its activity coefficient departs further from unity. Activity corrections are more important for ions with a charge of ±3 than for ions with a charge of ±1 (Figure 8-4).

3. **The smaller the ion size (α)**, the more important activity effects become.

a. Lanthanides are elements 57–71 in the periodic table.

*source: Data from J. Kielland, J. Am. Chem. Soc. 1937, **59**, 1675.*
EXAMPLE Using Table 8-1
Find the activity coefficient of Ca²⁺ in a solution of 3.3 mM CaCl₂.

Solution The ionic strength is
\[
\mu = \frac{1}{2} \left([Ca^{2+}] \cdot 2^2 + [Cl^-] \cdot (-1)^2 \right)
\]
\[
= \frac{1}{2} \left((0.0033) \cdot 4 + (0.0066) \cdot 1 \right) = 0.010 \text{ M}
\]
In Table 8-1, Ca²⁺ is listed under the charge ±2 and has a size of 600 pm. Thus γ = 0.675 when μ = 0.010 M.

TEST YOURSELF Find γ for Cl⁻ in 0.33 mM CaCl₂. (Answer: 0.964)

How to Interpolate
If you need to find an activity coefficient for an ionic strength that is between values in Table 8-1, you can use Equation 8-6. Alternatively, in the absence of a spreadsheet, you can interpolate in Table 8-1. In *linear interpolation*, we assume that values between two entries of a table lie on a straight line. For example, consider a table in which y = 0.67 when x = 10 and y = 0.83 when x = 20. What is the value of y when x = 16?

<table>
<thead>
<tr>
<th>x value</th>
<th>y value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.67</td>
</tr>
<tr>
<td>16</td>
<td>?</td>
</tr>
<tr>
<td>20</td>
<td>0.83</td>
</tr>
</tbody>
</table>

To interpolate a value of y, we can set up a proportion:

\[
\frac{\text{Unknown y interval}}{\Delta y} = \frac{\text{known x interval}}{\Delta x}
\]

\[
\frac{0.83 - y}{0.83 - 0.67} = \frac{20 - 16}{20 - 10} \Rightarrow y = 0.766
\]

For x = 16, our estimate of y is 0.766.

EXAMPLE Interpolating Activity Coefficients
Calculate the activity coefficient of H⁺ when μ = 0.025 M.

Solution H⁺ is the first entry in Table 8-1.

<table>
<thead>
<tr>
<th>μ</th>
<th>γ for H⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.914</td>
</tr>
<tr>
<td>0.025</td>
<td>?</td>
</tr>
<tr>
<td>0.05</td>
<td>0.86</td>
</tr>
</tbody>
</table>

The linear interpolation is set up as follows:

\[
\frac{\text{Unknown γ interval}}{\Delta γ} = \frac{\text{known μ interval}}{\Delta μ}
\]

\[
\frac{0.86 - γ}{0.86 - 0.914} = \frac{0.05 - 0.025}{0.05 - 0.01}
\]

\[
γ = 0.894
\]
Another Solution A better, but slightly more tedious, calculation uses Equation 8-6, with the ion size \(\alpha = 900 \text{ pm} \) listed for \(\text{H}^+ \) in Table 8-1:

\[
\log \gamma_{\text{H}^+} = \frac{(-0.51)(1^2)\sqrt{0.025}}{1 + (900\sqrt{0.025}/305)} = -0.054_{98}
\]

\[
\gamma_{\text{H}^+} = 10^{-0.054_{98}} = 0.88_{1}
\]

TEST YOURSELF By interpolation, find \(\gamma \) for \(\text{H}^+ \) when \(\mu = 0.06 \text{ M} \). (Answer: 0.854)

Activity Coefficients of Nonionic Compounds

Neutral molecules, such as benzene and acetic acid, have no ionic atmosphere because they have no charge. To a good approximation, their activity coefficients are unity when the ionic strength is less than 0.1 M. In this book, we set \(\gamma = 1 \) for neutral molecules. That is, the activity of a neutral molecule will be assumed to be equal to its concentration.

For gases such as \(\text{H}_2 \), the activity is written

\[
\mathcal{A}_{\text{H}_2} = P_{\text{H}_2}
\]

where \(P_{\text{H}_2} \) is pressure in bars. The activity of a gas is called its fugacity, and the activity coefficient is called the fugacity coefficient. Deviation of gas behavior from the ideal gas law results in deviation of the fugacity coefficient from unity. For gases at or below 1 bar, \(\gamma = 1 \). Therefore, for gases, we will set \(\mathcal{A} = P \text{(bar)} \).

High Ionic Strengths

Above an ionic strength of \(\sim 1 \text{ M} \), activity coefficients of most ions increase, as shown for \(\text{H}^+ \) in \(\text{NaClO}_4 \) solutions in Figure 8-5. We should not be too surprised that activity coefficients in concentrated salt solutions are not the same as those in dilute aqueous solution. The “solvent” is no longer \(\text{H}_2\text{O} \) but, rather, a mixture of \(\text{H}_2\text{O} \) and \(\text{NaClO}_4 \). Hereafter, we limit our attention to dilute aqueous solutions.

EXAMPLE Using Activity Coefficients

Find the concentration of \(\text{Ca}^{2+} \) in equilibrium with 0.050 M \(\text{NaF} \) saturated with \(\text{CaF}_2 \). The solubility of \(\text{CaF}_2 \) is small, so the concentration of \(\text{F}^- \) is 0.050 M from \(\text{NaF} \).

Solution We find \([\text{Ca}^{2+}]\) from the solubility product expression, including activity coefficients. The ionic strength of 0.050 M \(\text{NaF} \) is 0.050 M. At \(\mu = 0.050 \text{ M} \) in Table 8-1, we find \(\gamma_{\text{Ca}^{2+}} = 0.485 \) and \(\gamma_{\text{F}^-} = 0.81 \).

\[
K_{sp} = [\text{Ca}^{2+}] [\text{F}^-]^{2} \gamma_{\text{Ca}^{2+}} \gamma_{\text{F}^-}^{2}
\]

\[
3.2 \times 10^{-11} = [\text{Ca}^{2+}] (0.485)(0.050)^2(0.81)^2
\]

\[
[\text{Ca}^{2+}] = 4.0 \times 10^{-8} \text{ M}
\]

The value of \(K_{sp} \) came from Appendix F. Note that \(\gamma_{\text{F}^-} \) is squared.

TEST YOURSELF Find \([\text{Hg}^{2+}]\) in equilibrium with 0.010 M \(\text{KCl} \) saturated with \(\text{Hg}_2\text{Cl}_2 \). (Answer: 2.2 \times 10^{-14} \text{ M})

8-3 pH Revisited

The definition \(\text{pH} = -\log[\text{H}^+] \) in Chapter 6 is not exact. A better definition is

\[
\text{pH} = -\log \mathcal{A}_{\text{H}^+} = -\log[\text{H}^+] \gamma_{\text{H}^+}
\]

When we measure pH with a pH meter, we are attempting to measure the negative logarithm of the hydrogen ion activity, not its concentration.
Example: pH of Pure Water at 25°C

Let’s calculate the pH of pure water by using activity coefficients.

Solution The relevant equilibrium is

\[\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \quad (8-9) \]

\[K_w = \mathcal{A}_{\text{H}^+} \cdot \mathcal{A}_{\text{OH}^-} = [\text{H}^+] [\text{OH}^-] \gamma_{\text{OH}^-} \quad (8-10) \]

H\(^+\) and OH\(^-\) are produced in a 1:1 mole ratio, so their concentrations must be equal. Calling each concentration \(x\), we write

\[K_w = 1.0 \times 10^{-14} = (x) (x) \gamma_{\text{H}^+} \gamma_{\text{OH}^-} \]

But the ionic strength of pure water is so small that it is reasonable to guess that \(\gamma_{\text{H}^+} = \gamma_{\text{OH}^-} = 1\). Using these values in the preceding equation gives

\[1.0 \times 10^{-14} = (x)(1)(1) = x^2 \Rightarrow x = 1.0 \times 10^{-7} \text{ M} \]

The concentrations of H\(^+\) and OH\(^-\) are both \(1.0 \times 10^{-7}\) M. The ionic strength is \(1.0 \times 10^{-7}\) M, so each activity coefficient is very close to 1.00. The pH is

\[\text{pH} = -\log [\text{H}^+] \gamma_{\text{H}^+} = -\log (1.0 \times 10^{-7})(1.00) = 7.00 \]

Example: pH of Water Containing a Salt

Now let’s calculate the pH of water containing 0.10 M KCl at 25°C.

Solution Reaction 8-9 tells us that \([\text{H}^+] = [\text{OH}^-]\). However, the ionic strength of 0.10 M KCl is 0.10 M. The activity coefficients of H\(^+\) and OH\(^-\) in Table 8-1 are 0.83 and 0.76, respectively, when \(\mu = 0.10\) M. Putting these values into Equation 8-10 gives

\[K_w = [\text{H}^+] [\text{OH}^-] \gamma_{\text{H}^+} \gamma_{\text{OH}^-} \]

\[1.0 \times 10^{-14} = (x)(0.83)(0.76) \]

\[x = 1.26 \times 10^{-7} \text{ M} \]

The concentrations of H\(^+\) and OH\(^-\) are equal and are both greater than \(1.0 \times 10^{-7}\) M. The activities of H\(^+\) and OH\(^-\) are not equal in this solution:

\[\mathcal{A}_{\text{H}^+} = [\text{H}^+] \gamma_{\text{H}^+} = (1.26 \times 10^{-7})(0.83) = 1.05 \times 10^{-7} \]

\[\mathcal{A}_{\text{OH}^-} = [\text{OH}^-] \gamma_{\text{OH}^-} = (1.26 \times 10^{-7})(0.76) = 0.96 \times 10^{-7} \]

Finally, we calculate pH = \(-\log \mathcal{A}_{\text{H}^+} = -\log (1.05 \times 10^{-7}) = 6.98\).

Test Yourself Find [H\(^+\)] and the pH of 0.05 M LiNO\(_3\). (Answer: 1.20 \times 10^{-7} M, 6.99)

The pH of water changes from 7.00 to 6.98 when we add 0.10 M KCl. KCl is not an acid or a base. The pH changes because KCl affects the activities of H\(^+\) and OH\(^-\). The pH change of 0.02 units lies at the limit of accuracy of pH measurements and is hardly important. However, the *concentration* of H\(^+\) in 0.10 M KCl (1.26 \times 10^{-7} M) is 26% greater than the concentration of H\(^+\) in pure water (1.00 \times 10^{-7} M).

8-4 Systematic Treatment of Equilibrium

The systematic treatment of equilibrium is a way to deal with all types of chemical equilibria, regardless of their complexity. After setting up general equations, we often introduce specific conditions or judicious approximations that allow simplification. Even simplified calculations are usually tedious, so we make liberal use of spreadsheets for numerical solutions.

The systematic procedure is to write as many independent algebraic equations as there are unknowns (species) in the problem. The equations are generated by writing all the chemical equilibrium conditions plus two more: the balances of charge and of mass. There is only one charge balance in a given system, but there could be several mass balances.
Solutions must have zero total charge.

The mass balance is a statement of the conservation of matter. It really refers to conservation of atoms, not to mass.

The coefficient of each term in the charge balance equals the magnitude of the charge on each ion.

\[\sum (\text{positive charges}) = \sum (\text{negative charges}) \]

Activity coefficients do not appear in the charge balance. The charge contributed by 0.1 M H⁺ is exactly 0.1 M. Think about this.

FIGURE 8-6 Charge contributed by each ion in 1.00 L of solution containing 0.025 0 mol KH₂PO₄ plus 0.030 0 mol KOH. The total positive charge equals the total negative charge.

\[\sum (\text{positive charges}) = \sum (\text{negative charges}) \]

EXAMPLE Writing a Charge Balance

Write the charge balance for a solution containing H₂O, H⁺, OH⁻, ClO₃⁻, Fe(CN)₆³⁻, CN⁻, Fe³⁺, Mg²⁺, CH₃OH, HCN, NH₃, and NH₂⁻.

Solution Neutral species (H₂O, CH₃OH, HCN, and NH₃) contribute no charge, so the charge balance is

\[[H^+] + 3[Fe^{3+}] + 2[Mg^{2+}] + [NH_3] = [OH^-] + [ClO_3^-] + 3[Fe(CN)_6^{3-}] + [CN^-] \]

TEST YOURSELF What would be the charge balance if you add MgCl₂ to the solution and it dissociates into Mg²⁺ + 2Cl⁻? (Answer: [H⁺] + 3[Fe³⁺] + 2[Mg²⁺] + [NH₃] = [OH⁻] + [Cl⁻] + [ClO₃⁻] + 3[Fe(CN)₆³⁻] + [CN⁻] + [Cl⁻])

Mass Balance

The mass balance, also called the material balance, is a statement of the conservation of matter. The mass balance states that the quantity of all species in a solution containing a particular atom (or group of atoms) must equal the amount of that atom (or group) delivered to the solution. It is easier to see this relation through examples than by a general statement.

Charge Balance

The charge balance is an algebraic statement of electroneutrality: The sum of the positive charges in solution equals the sum of the negative charges in solution.

Suppose that a solution contains the following ionic species: H⁺, OH⁻, K⁺, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻. The charge balance is

\[[H^+] + [K^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}] \] (8-11)

This statement says that the total charge contributed by H⁺ and K⁺ equals the magnitude of the charge contributed by all of the anions on the right side of the equation. The coefficient in front of each species always equals the magnitude of the charge on the ion. This statement is true because a mole of, say, PO₄³⁻ contributes three moles of negative charge. If [PO₄³⁻] = 0.01 M, the negative charge is 3[PO₄³⁻] = 3(0.01) = 0.03 M.

Equation 8-11 appears unbalanced to many people. “The right side of the equation has much more charge than the left side!” you might think. But you would be wrong.

For example, consider a solution prepared by weighing out 0.025 0 mol of KH₂PO₄ plus 0.030 0 mol of KOH and diluting to 1.00 L. The concentrations of the species at equilibrium are calculated to be

\[[H^+] = 3.9 \times 10^{-12} \text{ M} \quad [H_2PO_4^-] = 1.4 \times 10^{-6} \text{ M} \]
\[[K^+] = 0.055 0 \text{ M} \quad [HPO_4^{2-}] = 0.022 56 \text{ M} \]
\[[OH^-] = 0.002 56 \text{ M} \quad [PO_4^{3-}] = 0.004 44 \text{ M} \]

This calculation, which you should be able to do when you have finished studying acids and bases, takes into account the reaction of OH⁻ with H₂PO₄ to produce HPO₄²⁻ and PO₄³⁻.

Are the charges balanced? Yes, indeed. Plugging into Equation 8-11, we find

\[[H^+] + [K^+] = [OH^-] + [H_2PO_4^-] + 2[HPO_4^{2-}] + 3[PO_4^{3-}] \]
\[3.9 \times 10^{-12} + 0.055 0 = 0.002 56 + 1.4 \times 10^{-6} + 2(0.022 56) + 3(0.004 44) \]
\[0.055 0 \text{ M} = 0.055 0 \text{ M} \]

The total positive charge is 0.055 0 M, and the total negative charge also is 0.055 0 M (Figure 8-6). Charges must balance in every solution. Otherwise, a beaker with excess positive charge would glide across the lab bench and smash into a beaker with excess negative charge.

The general form of the charge balance for any solution is

\[\sum n_1[C_1] + n_2[C_2] + \ldots = m_1[A_1] + m_2[A_2] + \ldots \] (8-12)

where [C] is the concentration of a cation, \(n \) is the charge of the cation, [A] is the concentration of an anion, and \(m \) is the magnitude of the charge of the anion.

Suppose that a solution is prepared by dissolving 0.050 mol of acetic acid in water to give a total volume of 1.00 L. Acetic acid partially dissociates into acetate:

\[
\text{CH}_3\text{CO}_2\text{H} \rightleftharpoons \text{CH}_3\text{CO}_2^- + H^+
\]

The mass balance states that the quantity of dissociated and undissociated acetic acid in the solution must equal the amount of acetic acid put into the solution.

Mass balance for acetic acid in water:

\[
0.050 \, \text{M} = [\text{CH}_3\text{CO}_2\text{H}] + [\text{CH}_3\text{CO}_2^-]
\]

When a compound dissociates in several ways, the mass balance must include all the products. Phosphoric acid (H$_3$PO$_4$), for example, dissociates to H$_2$PO$_4^-$, HPO$_4^{2-}$, and PO$_4^{3-}$. The mass balance for phosphorus atoms in a solution prepared by dissolving 0.0250 mol of H$_3$PO$_4$ in 1.00 L is

\[
0.0250 \, \text{M} = [\text{H}_3\text{PO}_4] + [\text{H}_2\text{PO}_4^-] + [\text{HPO}_4^{2-}] + [\text{PO}_4^{3-}]
\]

EXAMPLE
Mass Balance When the Total Concentration Is Known

Write the mass balances for K$^+$ and for phosphate in a solution prepared by mixing 0.0250 mol KH$_3$PO$_4$ plus 0.0300 mol KOH and diluting to 1.00 L.

Solution
The total K$^+$ is 0.0250 M + 0.0300 M, so one mass balance is

\[
[K^+] = 0.0550 \, \text{M}
\]

The total of all forms of phosphate is 0.0250 M, so the mass balance for phosphate is

\[
[H_3PO_4] + [H_2PO_4^-] + [HPO_4^{2-}] + [PO_4^{3-}] = 0.0250 \, \text{M}
\]

TEST YOURSELF
Write two mass balances for a 1.00-L solution containing 0.100 mol of sodium acetate.
(Answer: [Na$^+$] = 0.100 M; [CH$_3$CO$_2$H] + [CH$_3$CO$_2^-$] = 0.100 M)

Now consider a solution prepared by dissolving La(IO$_3$)$_3$ in water.

\[
\text{La(IO}_3\text{)}_3(s) \rightleftharpoons \text{La}^{3+} + 3\text{IO}_3^-
\]

We do not know how much La$^{3+}$ or IO$_3^-$ is dissolved, but we do know that there must be three iodate ions for each lanthanum ion dissolved. That is, the iodate concentration must be three times the lanthanum concentration. If La$^{3+}$ and IO$_3^-$ are the only species derived from La(IO$_3$)$_3$, then the mass balance is

\[
[\text{IO}_3^-] = 3[\text{La}^{3+}]
\]

If the solution also contains the ion pair LaIO$_3^{2+}$ and the hydrolysis product LaOH$^{2+}$, the mass balance would be

\[
[\text{Total iodate}] = 3[\text{total lanthanum}]
\]

\[
[\text{IO}_3^-] + [\text{LaIO}_3^{2+}] = 3[\text{La}^{3+}] + [\text{LaIO}_3^{2+}] + [\text{LaOH}^{2+}]
\]

EXAMPLE
Mass Balance When the Total Concentration Is Unknown

Write the mass balance for a saturated solution of the slightly soluble salt Ag$_3$PO$_4$, which produces PO$_4^{3-}$ and 3Ag$^+$ when it dissolves.

Solution
If the phosphate in solution remained as PO$_4^{3-}$, we could write

\[
[\text{Ag}^+] = 3[\text{PO}_4^{3-}]
\]

because three silver ions are produced for each phosphate ion. However, phosphate reacts with water to give HPO$_4^{2-}$, H$_2$PO$_4$, and H$_3$PO$_4$, so the mass balance is

\[
[\text{Ag}^+] = 3[\text{PO}_4^{3-}] + [\text{HPO}_4^{2-}] + [\text{H}_2\text{PO}_4] + [\text{H}_3\text{PO}_4]
\]

Atoms of Ag = 3 (atoms of P)
Ca\(^{2+}\) is the most common cation in rivers and lakes. It comes from dissolution of the mineral calcite by the action of CO\(_2\) to produce 2 moles of HCO\(_3^-\) for each mole of Ca\(^{2+}\):

\[
\text{CaCO}_3(s) + \text{CO}_2(aq) + \text{H}_2\text{O}\rightleftharpoons \text{Ca}^{2+} + 2\text{HCO}_3^- \quad \text{(A)}
\]

Near neutral pH, most of the product is bicarbonate, not CO\(_3^{2-}\) or H\(_2\)CO\(_3\). The mass balance for the dissolution of calcite is therefore \([\text{HCO}_3^-] = 2[\text{Ca}^{2+}]\). Indeed, measurements of \(\text{Ca}^{2+}\) and HCO\(_3^-\) in many rivers conform to this mass balance, shown by the straight line on the graph. Rivers such as the Danube, the Mississippi, and the Congo, which lie on the line \([\text{HCO}_3^-] = 2[\text{Ca}^{2+}]\), appear to be saturated with calcium carbonate. If the river water were in equilibrium with atmospheric CO\(_2\) \((P_{\text{CO}_2} = 10^{-3.4}\text{ bar})\), the concentration of \(\text{Ca}^{2+}\) would be 21 mg/L (see Problem 8-34). Rivers with more than 21 mg of Ca\(^{2+}\) per liter have a higher concentration of dissolved CO\(_2\) produced by respiration or from inflow of groundwaters with a high CO\(_2\) content. Rivers such as the Nile, the Niger, and the Amazon, for which \(2[\text{Ca}^{2+}] < [\text{HCO}_3^-]\), are not saturated with CaCO\(_3\).

Between 1960 and 2016, atmospheric CO\(_2\) increased by 28%—mostly from our burning of fossil fuel. This increase drives Reaction A to the right and threatens the existence of coral reefs,\(^\text{x}\) which are living structures consisting largely of CaCO\(_3\). Coral reefs are a unique habitat for many aquatic species. Continued buildup of atmospheric CO\(_2\) threatens certain plankton and other forms of sea life with CaCO\(_3\) shells,\(^\text{y}\) a loss that, in turn, threatens higher members of the food chain.

Box 8-3 Calcium Carbonate Mass Balance in Rivers

That is, the number of atoms of Ag\(^+\) must equal three times the total number of atoms of phosphorus, regardless of how many species contain phosphorus.

TEST YOURSELF Write the mass balance for a saturated solution of Ba(HSO\(_4\))\(_2\); if the species in solution are Ba\(^{2+}\), BaSO\(_4\)(aq), HSO\(_4^-\), SO\(_4^{2-}\), and BaOH\(^-\). (Answer: 2 \(\times\) total barium = total sulfate, or \(2[[\text{Ba}^{2+}] + [\text{BaSO}_4(aq)] + [\text{BaOH}^-] = [\text{SO}_4^{2-}] + [\text{HSO}_4^-] + [\text{BaSO}_4(aq)]\))

Systematic Treatment of Equilibrium

Now that we have considered the charge and mass balances, we are ready for the systematic treatment of equilibrium.\(^\text{z}\) Here is the general prescription:

Step 1 Write the pertinent reactions.

Step 2 Write the charge balance equation.

Step 3 Write mass balance equations. There may be more than one.

Step 4 Write the equilibrium constant expression for each chemical reaction. This step is the only one in which activity coefficients appear.

Step 5 Count the equations and unknowns. There should be as many equations as unknowns (chemical species). If not, you must either find more equilibria or fix some concentrations at known values.

Step 6 Solve for all unknowns.

Steps 1 and 6 are the heart of the problem. Guessing what chemical equilibria exist in a given solution requires a fair degree of chemical intuition. In this book, you will usually be given help with step 1. Unless we know all the relevant equilibria, it is not possible to calculate the composition of a solution correctly. Because we do not know all the chemical reactions, we undoubtably oversimplify many equilibrium problems. Step 6—solving the equations—is likely to be your biggest challenge. With \(n\) equations and \(n\) unknowns, the problem can be solved, at least in principle. In the simplest cases, you can do this by hand, but, for most problems, approximations are made or a spreadsheet is employed.
Applying the Systematic Treatment of Equilibrium

Now we examine some problems to learn to apply the systematic treatment of equilibrium and to illustrate what can be done by hand and when a spreadsheet is really helpful.

A Solution of Ammonia

Let’s find the concentrations of species in an aqueous solution containing 0.010 mol NH₃ in 1.000 L. The primary equilibrium is

\[\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^- \quad K_b = 1.76 \times 10^{-5} \text{ at } 25°C \]

(8-13)

A second equilibrium in every aqueous solution is

\[\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \quad K_w = 1.0 \times 10^{-14} \text{ at } 25°C \]

(8-14)

Our goal is to find \([\text{NH}_3]\), \([\text{NH}_4]^+\), \([\text{H}^+]\), and \([\text{OH}^-]\).

Step 1 Pertinent reactions. They are 8-13 and 8-14.

Step 2 Charge balance. The sum of positive charge equals the sum of negative charge:

\[[\text{NH}_4^+] + [\text{H}^+] = [\text{OH}^-] \]

(8-15)

Step 3 Mass balance. All of the ammonia delivered to the solution is either in the form \(\text{NH}_3\) or \(\text{NH}_4^+\). These two must add up to 0.010 mol.

\[[\text{NH}_3] + [\text{NH}_4^+] = 0.010 \text{ M} = F \]

(8-16)

where \(F\) stands for formal concentration.

Step 4 Equilibrium expressions

\[K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = 10^{-4.755} \]

(8-17)

\[K_w = [\text{H}^+][\text{OH}^-] = 10^{-14.00} \]

(8-18)

This is the only step in which activity coefficients enter the problem.

Step 5 Count equations and unknowns. We have four equations, 8-15 to 8-18, and four unknowns (\([\text{NH}_3]\), \([\text{NH}_4]^+\), \([\text{H}^+]\), and \([\text{OH}^-]\)). We have enough information to solve the problem.

Step 6 Solve.

This “simple” problem is complicated. Let’s start by ignoring activity coefficients; we return to them later in the \(\text{Mg(OH)}_2\) example. Our approach is to eliminate one variable at a time until only one unknown is left. For an acid-base problem, I choose to express each concentration in terms of \([\text{H}^+]\). A substitution we can always make is \([\text{OH}^-] = \frac{K_w}{[\text{H}^+]}\).

Putting this expression for \([\text{OH}^-]\) into the charge balance 8-15 gives

\[[\text{NH}_4^+] + [\text{H}^+] = \frac{K_w}{[\text{H}^+]} \]

from which we can solve for \([\text{NH}_4^+]\):

\[[\text{NH}_4^+] = \frac{K_w}{[\text{H}^+]} - [\text{H}^+] \]

(8-19)

The mass balance tells us that \([\text{NH}_3] = F - [\text{NH}_4^+]\). We can substitute the expression for \([\text{NH}_4^+]\) from Equation 8-19 into the mass balance to express \([\text{NH}_3]\) in terms of \([\text{H}^+]\):

\[[\text{NH}_3] = F - [\text{NH}_4^+] = F - \left(\frac{K_w}{[\text{H}^+]} - [\text{H}^+] \right) \]

(8-20)

Equation 8-19 gives \([\text{NH}_4^+]\) in terms of \([\text{H}^+]\). Equation 8-20 gives \([\text{NH}_3]\) in terms of \([\text{H}^+]\).

We can generate an equation in which the only unknown is \([\text{H}^+]\) by substituting our expressions for \([\text{NH}_4^+]\), \([\text{NH}_3]\), and \([\text{OH}^-]\) into the \(K_b\) equilibrium (still ignoring activity coefficients):

\[K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]} = \left(\frac{K_w}{[\text{H}^+] - [\text{H}^+]} \right) \left(\frac{K_w}{[\text{H}^+] + [\text{H}^+]} \right) \]

(8-21)
Equation 8-21 is horrible, but $[H^+]$ is the only unknown. Excel has a built-in procedure called Goal Seek that solves equations with one unknown. Set up the spreadsheet in Figure 8-7, which uses Equations 8-19 and 8-20 for $[NH_4^+]$ and $[NH_3]$, plus $[OH^-] = K_b/[H^+]$ in cells B9, B11, and B10. Cell B5 contains the formal concentration of ammonia, $F = 0.01$ M. Cell B7 contains an estimate (a guess in this case) for K_b. Change to $1E-14$ and click OK. When the difference in cell B13 is less than $1E-14$, Excel will go to the File tab, click Options, and select Formulas. In Calculation Options, set Maximum Change to $1E-14$ and click OK. When the difference in cell B13 is less than $1E-14$, Excel will consider it to be “zero.”

Back in the spreadsheet, select the Data tab and click What If Analysis in Forecast. Select Goal Seek in the Goal Seek window in Figure 8-8a, set cell B13 To value 0 By changing cell B7. Click OK and Excel varies the value in B7 until the value in B13 is close to 0. The final pH appears in cell B7 in Figure 8-8b. Concentrations of all species appear in cells B8: B11. That was pretty easy once we set up the spreadsheet!

The concentrations of $[NH_4^+]$ and $[NH_3]$ in cells B9 and B11 after executing Goal Seek in Figure 8-8b confirm that ammonia is a weak base. The fraction that has reacted with water is just 4.1%:

\[
\text{Fraction reacted} = \frac{[NH_4^+]}{[NH_3] + [NH_4^+]} = \frac{[4.11\times10^{-4}M]}{[9.59\times10^{-5}M] + [4.11\times10^{-4}M]} = 4.1\%
\]

You should now appreciate that applying the systematic treatment of equilibrium to even the simplest of problems is not simple. In most equilibrium problems, we make simplifying approximations to reach a good answer with a reasonable effort. After solving a problem, we must always verify that our approximations are valid.

Here is an approximation to simplify the ammonia problem. Ammonia is a base, so we expect that $[OH^-] \gg [H^+]$. For example, suppose the pH comes out to 9. Then $[H^+] = 10^{-9} \text{ M}$ and $[OH^-] = K_w/[H^+] = 10^{-14}/10^{-9} = 10^{-5} \text{ M}$. That is, $[OH^-] \gg [H^+]$. In the first term

Figure 8-7
Spreadsheet to find concentrations of species in aqueous NH₃ using Excel Goal Seek.

Figure 8-8
(a) Goal Seek window and (b) concentrations after executing Goal Seek.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Using Goal Seek for Ammonia Equilibrium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$pK_b = 4.755$</td>
<td>$K_b = 1.76E-05 = 10^{-5}B3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$pK_w = 14.00$</td>
<td>$K_w = 1.00E-14 = 10^{-14}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$F = 0.01$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\text{pH} = 9$ (Initial value is estimate)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$[H^+] = 1.00E-09 = 10^{-9}B7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$[NH_4^+] = K_b/[H^+] = 1.00E-05 = D4/B8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$[OH^-] = K_b/[H^+] = 1.00E-05 = D4/B8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$Q = [NH_4^+][OH^-]/[NH_3] = 1.00E-08 = B9*B10/B11$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$K_b - [NH_4^+][OH^-]/[NH_3] = 1.76E-05 = D3-D12$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
of the numerator of Equation 8-21, we can neglect \([H^+]\) in comparison with \(K_w/[H^+]\). In the denominator, we can also neglect \([H^+]\) in comparison with \(K_w/[H^+]\). With these approximations, Equation 8-21 becomes

\[
K_b = \left(\frac{K_w}{[H^+]} - [H^+] \right) \left(\frac{K_w}{[H^+]} \right) = \left(\frac{K_w}{[H^+]} \right) \left(\frac{K_w}{[H^+]} \right) = \frac{[OH^-]^2}{F - [OH^-]} \quad (8-22)
\]

Equation 8-22 is quadratic with one variable \([OH^-]\). We can use algebra to solve for \([OH^-]\). We will deal with equations of this type extensively in the next chapter on acids and bases.

Now we introduce a more general spreadsheet approach that does not require us to reduce an equilibrium problem to one equation in one unknown.

Solubility and Hydrolysis of Thallium Azide

Consider the dissolution of thallium(I) azide, followed by base hydrolysis of azide:

- \(\text{TIN}_3(s) \rightleftharpoons \text{Tl}^+ + \text{N}_3^-\) \(\text{Thallium(I) azide}\)
- \(\text{N}_3^- + \text{H}_2\text{O} \rightleftharpoons \text{HN}_3 + \text{OH}^-\) \(\text{Hydrazoic acid}\)
- \(\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^-\) \(\text{Water}\)

Our goal is to find \([\text{Tl}^+], [\text{N}_3^-], [\text{HN}_3], [\text{H}^+],\) and \([\text{OH}^-]\).

Step 1 Pertinent reactions. The three reactions are 8-23 to 8-25.

Step 2 Charge balance. The sum of positive charge equals the sum of negative charge:

\([\text{Tl}^+] + [\text{H}^+] = [\text{N}_3^-] + [\text{OH}^-] \quad (8-26)\]

Step 3 Mass balance. Dissolution of TIN\(_3\) gives an equal number of \(\text{Tl}^+\) and \(\text{N}_3^-\). Some azide becomes hydrazoic acid. The concentration of \(\text{Tl}^+\) equals the sum of concentrations of \(\text{N}_3^-\) and \(\text{HN}_3\).

\([\text{Tl}^+] = [\text{N}_3^-] + [\text{HN}_3] \quad (8-27)\]

Step 4 Equilibrium expressions

\[
K_{sp} = [\text{Tl}^+] [\text{N}_3^-] = 10^{-3.66} \quad (8-28)
\]

\[
K_b = \frac{[\text{HN}_3]}{[\text{N}_3^-]} [\text{OH}^-] = 10^{-9.35} \quad (8-29)
\]

\[
K_w = [\text{H}^+] [\text{OH}^-] = 10^{-14.00} \quad (8-30)
\]

Step 5 Count equations and unknowns. There are five equations, 8-26 to 8-30, and five unknowns \(([\text{Tl}^+], [\text{N}_3^-], [\text{HN}_3], [\text{H}^+],\) and \([\text{OH}^-])\), so we have enough information to solve the problem.

Step 6 Solve. We now introduce a spreadsheet method with broad application to equilibrium problems. We ignore activity coefficients for now, but will eventually deal with them.

With five unknowns and three equilibria 8-28 to 8-30, the spreadsheet method begins with an estimate for two of the unknown concentrations:

Number of concentrations to estimate =

\[
\text{(number of unknowns)} - \text{(number of equilibria)} = 5 - 3 = 2 \quad (8-31)
\]

We then write expressions for the remaining three concentrations in terms of the two estimated concentrations. It is desirable to estimate concentrations of species that appear in two or more equilibria. In Equations 8-28 to 8-30, the species \(\text{N}_3^-\) and \(\text{OH}^-\) each appear twice, so we will estimate their concentrations. From these estimates, we find the remaining concentrations from the equilibrium expressions:

\[
[\text{Tl}^+] [\text{N}_3^-] = K_{sp} \Rightarrow [\text{Tl}^+] = K_{sp}/[\text{N}_3^-] \quad (8-32)
\]

\[
[\text{HN}_3] [\text{OH}^-] = K_b \Rightarrow [\text{HN}_3] = K_b/\text{[OH}^-]\quad (8-33)
\]

\[
[\text{H}^+] [\text{OH}^-] = K_w \Rightarrow [\text{H}^+] = K_w/\text{[OH}^-]\quad (8-34)
\]
Concentrations of different species in equilibrium could range over many orders of magnitude, which creates difficulties in computer arithmetic. Therefore, we express the concentrations of \(N_3^- \) and \(OH^- \) by their negative logarithms in cells B6 and B7. To estimate \([N_3^-] = 10^{-2} \text{ M} \), enter 2 in cell B6.

Just as \(pH = -\log[H^+] \), we define \(pC \) as the negative logarithm of a concentration:

\[
 pC = -\log C
\]

(8-35)

where \(C \) is a concentration. Similarly, \(pK \) is the negative logarithm of an equilibrium constant. For example, \(pK_w = -\log K_w \). If \(K_w = 1.00 \times 10^{-14} \), \(pK_w = 14.00 \).

How do you estimate \([N_3^-] \) and \([OH^-] \)? The value of \(K_w \) for \(\text{TIN}_3 \) is \(10^{-3.66} \). If there were no reaction of \(N_3^- \) with water, the concentrations would be \([\text{Tl}^+] = [N_3^-] = \sqrt{K_w} = 10^{-3.66/2} = 10^{-1.83} \text{ M} \). We only need an estimate for \([N_3^-] \), so \(pN_3^- = 2 \) is good enough in cell B6, giving \([N_3^-] = 10^{-2} \text{ M} \) in cell C6. But \(N_3^- \) reacts with \(H_2O \) to make \(OH^- \) by Reaction 8-24. With no calculation whatsoever, we can estimate that \([OH^-] \) might be \(~10^{-4} \text{ M} \) in a weakly basic solution. Therefore, enter \(pOH^- = 4 \) in cell B7. From \([N_3^-] \) and \([OH^-] \) in cells C6 and C7, the spreadsheet computes \([\text{Tl}^+] \), \([\text{HN}_3^-] \), and \([\text{H}^+] \) in cells C8:C10 from Equations 8-32 to 8-34. None of these values is correct. They are just starting estimates from which Excel can compute better values.

Figure 8-9 sets out the work of finding five unknown concentrations in cells C6:C10.

Type this spreadsheet, entering the required constants in cells B12:B14 and the formulas in cells C6:C10, F6:F8, and D12:D14.

Now we need to estimate concentrations for \(N_3^- \) and \(OH^- \). Concentrations of different species in equilibrium could range over many orders of magnitude, which creates difficulties in computer arithmetic. Therefore, we express the concentrations of \(N_3^- \) and \(OH^- \) by their negative logarithms in cells B6 and B7. To estimate \([N_3^-] = 10^{-2} \text{ M} \), enter 2 in cell B6.

Just as \(pH = -\log[H^+] \), we define \(pC \) as the negative logarithm of a concentration:

\[
 pC = -\log C
\]

(8-35)

where \(C \) is a concentration. Similarly, \(pK \) is the negative logarithm of an equilibrium constant. For example, \(pK_w = -\log K_w \). If \(K_w = 1.00 \times 10^{-14} \), \(pK_w = 14.00 \).

How do you estimate \([N_3^-] \) and \([OH^-] \)? The value of \(K_w \) for \(\text{TIN}_3 \) is \(10^{-3.66} \). If there were no reaction of \(N_3^- \) with water, the concentrations would be \([\text{Tl}^+] = [N_3^-] = \sqrt{K_w} = 10^{-3.66/2} = 10^{-1.83} \text{ M} \). We only need an estimate for \([N_3^-] \), so \(pN_3^- = 2 \) is good enough in cell B6, giving \([N_3^-] = 10^{-2} \text{ M} \) in cell C6. But \(N_3^- \) reacts with \(H_2O \) to make \(OH^- \) by Reaction 8-24. With no calculation whatsoever, we can estimate that \([OH^-] \) might be \(~10^{-4} \text{ M} \) in a weakly basic solution. Therefore, enter \(pOH^- = 4 \) in cell B7. From \([N_3^-] \) and \([OH^-] \) in cells C6 and C7, the spreadsheet computes \([\text{Tl}^+] \), \([\text{HN}_3^-] \), and \([\text{H}^+] \) in cells C8:C10 from Equations 8-32 to 8-34. None of these values is correct. They are just starting estimates from which Excel can compute better values.

The charge balance (8-26) can be rearranged to the form

\[
 b_1 = [\text{Tl}^+] + [H^+] - [N_3^-] - [OH^-] = 0
\]

(8-26a)

and the mass balance (8-27) can be rearranged to the form

\[
 b_2 = [\text{Tl}^+] - [N_3^-] - [\text{HN}_3^-] = 0
\]

(8-27a)

The sums labeled \(b_1 \) and \(b_2 \) in Equations 8-26a and 8-27a would both be 0 if the concentrations are correct. These sums are not 0 in our initial spreadsheet because the concentrations \([N_3^-] \) and \([OH^-] \) are not correct.

To find correct concentrations, we choose to minimize the sum \(\sum b_i^2 = b_1^2 + b_2^2 \), which is always a positive number. Our criterion for correct concentrations is that they satisfy the mass and charge balances (as well as the equilibrium expressions).

We minimize the sum of the squares of the mass and charge balances by using Excel Solver. When optimum concentrations are found, the sum will be a small number such as \(10^{-15} \). Solver sometimes does not work well when the sum is too small, so we preemptively multiply the charge and mass balances by \(10^6 \) in Figure 8-9 before using Solver. Cell F6 contains \(10^6 \times b_1 \) and cell F7 contains \(10^6 \times b_2 \). Cell F8 is the sum \((10^6 \times b_1)^2 + (10^6 \times b_2)^2 \).

In the Excel 2016 Data ribbon on a PC, find Solver in the Analyze section. If Solver is not already loaded, click the File menu and select Excel Options and Add-Ins. Select Solver Add-in, click GO, and then OK to load Solver. On a Mac, Excel 2016 Solver is located in the Tools menu. Click Tools and then click Add-Ins. Select Solver and click OK to load it. Solver is then run from the Data tab.
Click Solver. In the Solver Parameters window (Figure 8-10a), click Options. In Solver Options (Figure 8-10b), select the All Methods tab. Set Constraint Precision = \(1e-15\), Max time = 100 s. Still in the Solver Options window, select the GRG Nonlinear tab. In Derivatives, select Central. Other parameters can be left with default values. Click OK.

In the Solver Parameters window in Figure 8-10a, Set Objective \(F8\) To Min By Changing Variable Cells \(B6:B7\) (Figure 8-10a). Select a Solving Method should be GRG Nonlinear. You just instructed Solver to vary \(-p_{N3}\) and \(-p_{OH}\) in cells B6:B7 until the combined charge and mass balance in cell F8 is close to zero. Click Solve, and Solver returns new values for \(-p_{N3}\) and \(-p_{OH}\) in cells B6:B7. Note the sum in cell F8. Run Solver again to see if cell F8 decreases. Continue to run Solver until cell F8 remains constant. If F8 is very small (such as \(1e-10\)), you probably have a good solution. Try different starting values in cells B6 and B7 to show that Solver reaches the same solution. In some problems, after optimizing both variables, try optimizing one variable at a time (B6 or B7) to see if the solution improves, giving a smaller value in cell F8.

My final result is shown in Figure 8-11. Your numbers will probably be different. If your concentrations in cells C6:C10 agree with Figure 8-11 within three decimal places, your results are good enough.

We had estimated that \([N_3^-] = 10^{-2} M\) and \([OH^-] = 10^{-4} M\). Solver tells us that \([N_3^-] = 0.0148 M\) and \([OH^-] = 2.57 \times 10^{-6} M\). Figure 8-11 also tells us that \([HN_3] = 2.57 \times 10^{-6} M\), which is nearly equal to \([OH^-]\). Hydrolysis 8-24 produces one HN_3 for each OH^- . The fraction of azide that hydrolyzes is \([HN_3]/([N_3^-]+[HN_3]) = 0.017\%\). This fraction is sensible because \(N_3^-\) is a weak base with \(K_b = 10^{-9.35}\).

Let’s review the systematic equilibrium procedure:

1. We listed three chemical reactions that we think would occur when TIN_3(s) dissolves in water and wrote their equilibrium constant expressions.
2. We wrote the charge and mass balances.
3. We checked to be sure that we have as many equations as there are unknowns.
We estimated \(pC = -\log C \) for \(N_\text{II} \) and \(\text{OH}^- \) in cells B6 and B7.

1. Use Solver to adjust the values of \(pC \) in cells B6 and B7 to minimize the sum in cell F8.

2. From \([N_\text{II}]\) and \([\text{OH}^-]\) and the equilibrium expressions, we computed \([\text{Tl}^+], [\text{HN}_3], \) and \([\text{H}^+].\)

3. We then wrote the mass balance in the form \(b_1 = [\text{Tl}^+] - [N_\text{II}] - [\text{HN}_3] = 0 \) and the charge balance in the form \(b_2 = [\text{Tl}^+] + [\text{H}^+] - [N_\text{II}] - [\text{OH}^-] = 0.\)

4. We multiplied \(b_1 \) and \(b_2 \) by \(10^6 \) in anticipation that Solver would work better if we prevent \(b_1 \) and \(b_2 \) from becoming too small for accurate computer arithmetic.

5. We then asked Solver to vary \(pN_\text{II} \) and \(p\text{OH}^- \) to minimize \((10^6 \cdot b_1)^2 + (10^6 \cdot b_2)^2\) to satisfy the mass and charge balances.

6. As a check, vary the initial values of \(pN_\text{II} \) and \(p\text{OH}^- \) to see that Solver generates the same solution.

Solubility of Magnesium Hydroxide with Activity Coefficients

Let’s find the concentrations of species in a saturated solution of \(\text{Mg(OH)}_2 \), given the following chemistry. This time, we include activity coefficients.\(^{14}\)

\[
\text{Mg(OH)}_2(l) \rightleftharpoons \text{Mg}^{2+} + 2\text{OH}^- \\
K_a = \frac{[\text{Mg}^{2+}] [\text{OH}^-]^2}{[\text{Mg(OH)}_2]} = 10^{-11.15} \tag{8-36}
\]

\[
\text{Mg}^{2+} + \text{OH}^- \rightleftharpoons \text{MgOH}^+ \\
K_a = \frac{[\text{MgOH}^+]}{[\text{Mg}^{2+}] [\text{OH}^-]} = 10^{2.6} \tag{8-37}
\]

\[
\text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{OH}^- \\
K_w = [\text{H}^+] [\text{OH}^-] = 10^{-14.00} \tag{8-38}
\]

Step 1 Pertinent reactions are listed above.

Step 2 Charge balance:

\[2[\text{Mg}^{2+}] + [\text{MgOH}^+] + [\text{H}^+] = [\text{OH}^-] \tag{8-39}\]

Step 3 Mass balance. This is a little tricky. From Reaction 8-36, we could say that the concentrations of all species containing \(\text{OH}^- \) equal two times the concentrations of all magnesium species. However, Reaction 8-38 also creates 1 \(\text{OH}^- \) for each \(\text{H}^+ \). The mass balance accounts for both sources of \(\text{OH}^- \):

\[
[\text{OH}^-] + [\text{MgOH}^+] = 2([\text{Mg}^{2+}] + [\text{MgOH}^+] + [\text{H}^+]) \tag{8-40}
\]

Species containing \(\text{OH}^- \)
Species containing \(\text{Mg}^{2+} \)

After all this thinking, Equation 8-40 is equivalent to Equation 8-39.

Step 4 Equilibrium constant expressions are in Equations 8-36 through 8-38.

Step 5 Count equations and unknowns. We have four equations (8-36 to 8-39) and four unknowns: \([\text{Mg}^{2+}], [\text{MgOH}^+], [\text{H}^+], \) and \([\text{OH}^-].\)

Step 6 Solve. We will use the spreadsheet approach introduced in the TiN\(_3\) problem, but including activity coefficients this time. With four unknowns and three equilibria, we will estimate one concentration:

Number of concentrations to estimate =

\[(\text{number of unknowns}) - (\text{number of equilibria}) = 4 - 3 = 1\]
The strategy is to estimate one concentration and then let Excel Solver optimize that concentration for us. The correct ionic strength is a by-product of the optimization.

Mg$^{2+}$ appears in two equilibria and OH$^-$ appears in Table 8-1. We do not know the size of Mg$^{2+}$. For the sake of estimating [Mg$^{2+}$], let’s just consider the solubility equilibrium 8-36 and neglect activity coefficients. Reaction 8-36 creates 2 OH$^-$ for each Mg$^{2+}$. If $x = [Mg^{2+}]$, then [OH$^-$] = 2x. The K_{sp} expression gives

$$K_{sp} = [Mg^{2+}][OH^-]^2 = 7.1 \times 10^{-12}$$

$$x(2x)^2 = 4x^3 = 7.1 \times 10^{-12} \Rightarrow x = \left(\frac{7.1 \times 10^{-12}}{4}\right)^{1/3} = 1.2 \times 10^{-4} \text{ M}$$

The solution is $x = [Mg^{2+}] = 1.2 \times 10^{-4} \text{ M}$ or $pMg^{2+} = -\log(1.2 \times 10^{-4}) = 3.9$. I choose to estimate $pMg^{2+} = 4$ for the initial value.

Create the spreadsheet in Figure 8-12 with the value 0 in cell B5 and $pMg = 4$ in cell B8. Cell C8 contains $[Mg^{2+}]$ computed from $[Mg^{2+}] = 10^{-4}$-B8. Formulas are listed at the bottom of the spreadsheet. Cells C9:C11 compute [OH$^-$], $[MgOH^+]$, and [H$^+$] from the equilibrium expressions 8-36 to 8-38, including activity coefficients.

Now we wish to compute the ionic strength in cell B5 from the concentrations in cells C8:C11. However, concentrations depend on ionic strength and ionic strength depends on concentrations. You must enable Excel to handle the circular reference. In Excel 2016, select the File tab and select Options. In the Options window, select Formulas. In Calculation settings, check “Enable iterative calculation” and set Maximum Change to 1e-15. Click OK.

The file contains a completed spreadsheet with activity coefficients after Solver has operated.
Column F of Figure 8-12 computes log γ from the extended Debye-Hückel equation 8-6 with the formula in cell H22. Column G computes activity coefficients γ = 10^(log γ). These activity coefficients appear in the equilibrium expressions used to find concentrations in cells C9:C11 with formulas in cells H19:H21.

The charge balance in cell H14 is
\[b_1 = 2[Mg^{2+}] + [MgOH^+] + [H^+] - [OH^-] \]
In this particular problem, the mass balance is identical to the charge balance, so we do not use the mass balance. As in Figure 8-9 for TlN₃ equilibria, we choose to multiply the sum of charges in cell H14 by 10⁶ to prevent possible arithmetic errors with very small numbers in Excel.

The function we minimize in cell H15 is
\[\sum (10^6 * b_i)^2 = (10^6 * b_i)^2 \]

So, finally, here we go. Compose the spreadsheet in Figure 8-12. Use an initial estimate pMg₂⁺ = 4 in cell B8. On the Data tab, select Solver and then Options. On the All Methods tab, set Constraint Precision = 1e-15. On the GRG Nonlinear tab, for Derivatives select Central. Click OK. In the Solver Parameters window, Set Objective H15 To Min By Changing Variable Cells B8. Click Solve. Solver varies pMg₂⁺ in B8 until \(\sum (10^6 * b_i)^2 \) is a minimum in cell H15.

Final results shown in Figure 8-12 are
\[[Mg^{2+}] = 1.23 \times 10^{-4} \text{M} \quad [OH^-] = 2.57 \times 10^{-4} \text{M} \]
\[[MgOH^+] = 1.15 \times 10^{-5} \text{M} \quad [H^+] = 4.07 \times 10^{-11} \text{M} \]
\[\mu = 3.79 \times 10^{-4} \text{M} \]
Approximately 10% of the Mg²⁺ undergoes hydrolysis to MgOH⁺. The pH of the solution is
\[\text{pH} = -\log[H^+] = -\log([H^+] \gamma_{H^+}) = -\log(4.07 \times 10^{-11}) \times (0.979) = 10.40 \]

The spreadsheet in Figure 8-12 provides a tool with which you can tackle a variety of modest equilibrium problems including activity coefficients.

Solver works best when your initial estimates are close to the actual values and when you do not ask Solver to find too many variables at once. Always try some different initial estimates to see if Solver reaches the same conclusion. Try executing Solver successively with values from one run input to the next run to see if the solution improves, as judged by the \(\sum b_i^2 \) becoming smaller. If Solver is unable to find two or more variables in a complex problem, solve for one or two variables at a time while holding others fixed.

We Will Usually Omit Activity Coefficients

Although it is proper to write equilibrium constants in terms of activities, the complexity of manipulating activity coefficients is a nuisance. In most of this book, we will omit activity coefficients unless there is a particular point to be made.

Terms to Understand

- activity
- activity coefficient
- charge balance
- extended Debye-Hückel equation
- ionic strength
- pH
- pK
- ionic atmosphere
- mass balance

Summary

The thermodynamic equilibrium constant for the reaction \(aA + bB \leftrightarrow cC + dD \) is
\[K = \frac{[A]^a[B]^b}{[C]^c[D]^d} \]
where \(A_i \) is the activity of the \(i \)th species. The activity is the product of the concentration \(c \) and the activity coefficient \(\gamma_i \): \(A_i = c_i \gamma_i \). For nonionic compounds and gases, \(\gamma_i \approx 1 \). For ionic species, the activity coefficient depends on the ionic strength, defined as \(\mu = \frac{1}{2} \sum z_i^2 c_i \), where \(z_i \) is the charge of an ion. For low ionic strengths \((\leq 0.1 \text{M})\) the activity coefficient decreases as ionic strength increases. Dissociation of ionic compounds increases with ionic strength because the ionic atmosphere of each ion diminishes the attraction of ions for one another.

You should be able to estimate activity coefficients by interpolation in Table 8-1. pH is defined in terms of the activity of H⁺: \[\text{pH} = -\log[H^+] = -\log([H^+] \gamma_{H^+}) \]. By analogy, pK is the negative logarithm of an equilibrium constant.

In the systematic treatment of equilibrium, write pertinent equilibrium expressions, as well as the charge and mass balances. The charge balance states that the sum of all positive charges in solution equals the sum of all negative charges. The mass balance states that the moles of all forms of an element in solution must equal the moles of that element delivered to the solution. Be sure that you have as many
equations as unknowns and then solve for the concentrations by using algebra with approximations, or spreadsheets with the Solver routine. For Solver, we estimate (number of unknowns) – (number of equilibria) initial pC values and then let Solver find the pC values (and ionic strength) that minimize the sum of squares of the charge and mass balances. The ionic strength value is a by-product of the optimization.

Exercises

8-A. Assuming complete dissociation of the salts, calculate the ionic strength of (a) 0.2 mM KNO3; (b) 0.2 mM Cs2CrO4; (c) 0.2 mM MgCl2 plus 0.3 mM AlCl3.

8-B. Find the activity (not the activity coefficient) of the (CH3)4N+ (tetrapropylammonium) ion in a solution containing 0.005 M (CH3)4N+Br− plus 0.005 M (CH3)4NCI−.

8-C. Using activities, find [Ag+] in 0.060 M KSCN saturated with AgSCN(s).

8-D. Using activities, calculate the pH and concentration of H+ in 0.050 M LiBr at 25°C.

8-E. A 40.0-mL solution of 0.040 M Hg2(NO3)2 was titrated with 60.0 mL of 0.100 M KI to precipitate Hg2I2 (Ksp = 4.6 × 10−20).

(a) Show that 32.0 mL of KI are needed to reach the equivalence point.

(b) When 60.0 mL of KI have been added, virtually all Hg22+ has precipitated, along with 3.20 mmol of I−. Considering all ions present in the solution, calculate the ionic strength when 60.0 mL of KI have been added.

(c) Using activities, calculate pHg2+ (= −log 2[HI2−]) for (b).

8-F. (a) Write the mass balance for CaCl2 in water if the species are Ca2+, Cl−, and CaOH−. (b) Write the mass balance if the species are Ca2+, Cl−, CaCl2, and CaOH−. (c) Write the charge balance for (b).

Problems

Activity Coefficients

8-1. Explain why the solubility of an ionic compound increases as the ionic strength of the solution increases (at least up to ~0.5 M).

8-2. Which statements are true? In the ionic strength range 0−0.1 M, activity coefficients decrease with (a) increasing ionic strength; (b) increasing ionic charge; (c) decreasing hydration radius.

8-3. Color Plate 5 shows how the color of the acid-base indicator bromocresol green (H2BG) changes as NaCl is added to an aqueous solution of (H+)HBG−. Explain why the color changes from pale green to pale blue as NaCl is added.

8-4. Calculate the ionic strength of (a) 0.008 7 M KOH and (b) 0.000 2 M La(IO3)3 (assuming complete dissociation at this low concentration and no hydrolysis reaction to make LaOH2+).

8-5. Find the activity coefficient of each ion at the indicated ionic strength:

(a) SO42−

(b) Sc3+

(c) Eu3+

(d) (CH3CH2)3NH+

8-6. Interpolate in Table 8-1 to find the activity coefficient of H+ when µ = 0.030 M.

8-7. Calculate the activity coefficient of Zn2+ when µ = 0.083 M by using (a) Equation 8-6; (b) linear interpolation in Table 8-1.

8-8. Calculate the activity coefficient of Al3+ when µ = 0.083 M by linear interpolation in Table 8-1.

8-9. The equilibrium constant for dissolution of a nonionic compound, such as diethyl ether (CH3CH2OCH2CH3), in water can be written

\[
e_{ether} = e_{ether}^{aq} \quad K = [e_{ether}^{aq}]_{ether}
\]
At low ionic strength, $\gamma = 1$ for neutral compounds. At high ionic strength, most neutral molecules can be salted out of aqueous solution. That is, when a high concentration (typically > 1 M) of a salt such as NaCl is added to an aqueous solution, neutral molecules usually become less soluble. Does the activity coefficient, γ_{other}, increase or decrease at high ionic strength?

8-10. Including activity coefficients, find $[\text{Hg}_2^{2+}]$ in saturated Hg_2Br_2 in 0.001 00 M KBr.

8-11. Including activity coefficients, find the concentration of Ba^{2+} in a 0.100 M (CH$_3$)$_2$NO$_3$ solution saturated with Ba(NO$_3$)$_2$.

8-12. Find the activity coefficient of H^+ in a solution containing 0.010 M HCl plus 0.040 M KClO$_4$. What is the pH of the solution?

8-13. Using activities, calculate the pH of a solution containing 0.010 M NaOH plus 0.012 0 M LiNO$_3$. What would be the pH if you neglected activities?

8-14. The temperature-dependent form of the extended Debye-Hückel equation 8-6 is

$$\log \gamma = \frac{-(1.825 \times 10^4) (eT)^{3/2} \zeta^2 \sqrt{\mu}}{1 + \alpha \sqrt{\mu} (2.00) (eT)}$$

where ε is the (dimensionless) dielectric constant1 of water, T is temperature (K), ζ is the charge of the ion, μ is ionic strength (mol/L), and α is the ion size parameter (pm). The dependence of ε on temperature is

$$\varepsilon = 79.755 e^{-4.6 \times 10^{-5} (T - 293.15)}$$

Calculate the activity coefficient of SO$_4^{2-}$ at 50.00°C when $\mu = 0.100$ M. Compare your value with the one in Table 8-1.

8-15. Activity coefficient of a neutral molecule. We use the approximation that the activity coefficient (γ) of neutral molecules is 1.00. A more accurate relation is $\log \gamma = km$, where m is ionic strength and $k = 0.11$ for NH$_4$ and CO$_2$ and $k = 0.2$ for organic molecules. With activity coefficients for HA, A$^-$, and H$^+$, predict the value of the quotient below for benzoic acid (HA = C$_6$H$_5$CO$_2$H). The observed quotient is 0.63 ± 0.03.\(^{15}\)

$$\frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} \quad \text{(at } \mu = 0)$$

$$\frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} \quad \text{(at } \mu = 0.1 \text{ M)}$$

Concentration quotient =

Systematic Treatment of Equilibrium

8-16. State the meaning of the charge and mass balance equations.

8-17. Why do activity coefficients not appear in the charge and mass balance equations?

1 The dimensionless dielectric constant, ε, measures how well a solvent can separate oppositely charged ions. The force of attraction (newtons) between ions of charge q_1 and q_2 (coulombs) separated by distance r (meters) is

$$\text{Force} = -(8.988 \times 10^9) \frac{q_1 q_2}{\varepsilon r^2}$$

The larger the value of ε, the smaller the attraction between ions. Water, with $\varepsilon = 80$, separates ions very well. Here are some values of ε: methanol, 33; ethanol, 24; benzene, 2; vacuum and air, 1. Ionic compounds dissolved in solvents less polar than water may exist predominantly as ion pairs, not separate ions.

8-18. Write the charge balance for a solution containing H^+, OH^-, Ca^{2+}, HCO_3^-, CO_3^{2-}, $\text{Ca(HCO}_3)^+$, $\text{Ca(OH}_3)^+$, K^+, and ClO_3^-.

8-19. Write the charge balance for a solution of H_2SO_4 in water if the H_2SO_4 ionizes to H_2O^+ and SO_4^{2-}.

8-20. Write the charge balance for an aqueous solution of arsenic acid, H_2AsO_4, in which the acid can dissociate to H_2AsO_4, HASO_4^{2-}, and AsO_4^{3-}. Look up the structure of arsenic acid in Appendix G and write the structure of HASO_4^{2-}.

8-21. (a) Write the charge and mass balances for a solution made by dissolving MgBr_2 to give Mg^{2+}, Br^-, Mg^{2+}, and MgOH^-. (b) Modify the mass balance if the solution was made by dissolving 0.2 mol MgBr_2 in 1 L.

8-22. What would happen if charge balance did not exist in a solution? The force between two charges was given in the footnote to Problem 8-14. Find the force between two beakers separated by 1.5 m of air if one contains 250 mL with 1.0×10^{-6} M excess negative charge and the other has 250 mL with 1.0×10^{-6} M excess positive charge. There are 9.648×10^8 coulombs per mole of charge. Convert force from N into pounds (0.224 8 pounds/N). Could two elephants hold the beakers apart?

8-23. For a 0.1 M aqueous solution of sodium acetate, Na$^+$CH$_3$CO$_2$$_2$, one mass balance is simply [Na$^+$] = 0.1 M. Write a mass balance involving acetate.

8-24. Consider the dissolution of the compound X_2Y_2, which gives X_2Y^2+, X_Y^+, X_Y^{2+}, and Y^2-. Use the mass balance to find an expression for $[Y^2-]$ in terms of the other concentrations. Simplify your answer as much as possible.

8-25. Write a mass balance for a solution of Fe$_2$(SO$_4$)$_3$ if the species are Fe$^{3+}$, Fe(OH)$_{3-}$, Fe(OH)$_2^-$, Fe$_2$(OH)$_5^{2-}$, FeSO$_4^2-$, SO$_4^{2-}$, and HSO$_4$.

8-26. Ammonia equilibrium solved with Goal Seek. Modify Figure 8-7 to find the concentrations of species in 0.05 M NH$_3$. The only change required is the value of F. How do the pH and fraction of ammonia hydrolysis ($= [\text{NH}_3]/([\text{NH}_3]+[\text{NH}_2])$) change when the formal concentration of NH$_3$ increases from 0.01 to 0.05 M?

8-27. Ammonia equilibrium treated by Solver. We now use the Solver spreadsheet introduced in Figure 8-9 for TIN$_3$ solubility to find the concentrations of species in 0.01 M ammonia solution, neglecting activity coefficients. In the systematic treatment of equilibrium for NH$_3$ hydrolysis, we have four unknowns ([NH$_3$], [NH$_2$], [H$^+$], and [OH$^-$]) and two equilibria (8-13 and 8-14). Therefore, we will estimate the concentrations of (4 unknowns) – (2 equilibria) = 2 species, for which I choose NH$_3$ and OH$^-$. Set up the spreadsheet shown below, in which the estimates $p\text{NH}_3 = 3$ and $p\text{OH}^- = 3$ appear in cells B6 and B7. (Estimates come from the K_b equilibrium 8-17 with $[\text{NH}_3] = [\text{OH}^-] = (K_b [\text{NH}_3])^{1/2} [0.01] \approx p\text{NH}_3 = p\text{OH}^- = 3$. Estimates do not have to be very good for Solver to work.) The formula in cell C8 is $[\text{NH}_3] = [\text{NH}_2^+] + [\text{OH}^-] / K_b$ and the formula in C9 is $[\text{H}^+] = K_b / [\text{OH}^-]$. The mass balance b_1 appears in cell F6 and the charge balance b_2 appears in cell F7. Cell F8 has the sum $b_1 + b_2$. As described for TIN$_3$ on page 185, open the Solver window and set the Solver Options. Then use Solver to Set Objective C8 To Min By Changing Variable Cells B6:B7. What are the concentrations of the species? What fraction of ammonia ($= [\text{NH}_3]/([\text{NH}_3]+[\text{NH}_2])$) is hydrolyzed? Your answers should agree with those from Goal Seek in Figure 8-8.

(a) Following the NH₃ example in Section 8-5, write the equilibria and charge and mass balances needed to find the composition of 0.01 M sodium acetate (Na⁺A⁻). Include activity coefficients where appropriate. The two reactions are hydrolysis (pKₐ = 9.244) and ionization of H₂O.

(b) Including activity coefficients, set up a spreadsheet analogous to Figure 8-12 to find the concentrations of all species. Assign an initial ionic strength = 0.01 M. After the spreadsheet is set up, change the activity coefficients, and the fraction of ion pairing for the salts in Box 8-1, which are from Table 8-1 and the size of CaOH⁺ is 500 pm. As a check, total Mg, total Cl, and Kᵥᵢ are correctly computed in cells B21:B23.

The Problem: Create a spreadsheet like the one for MgCl₂ to find the concentrations, ionic strength, and ion-pair fraction in 0.025 F NaCl. The ion-pair formation constant from Appendix J is log Kᵥᵢ = 10⁻⁰.⁵ for the reaction Na⁺ + Cl⁻ = NaCl(aq). Mass balances are [Na⁺] + [NaCl(aq)] = F and [Na⁺] = [Cl⁻] which is also the charge balance. Estimate pNa⁺ and pCl⁻ for input and then vary pNa⁺ and pCl⁻ to minimize the sum of squares of the two mass balances.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ammonia equilibrium</td>
<td>F =</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1. Estimate values of pC = –log[C] for NH₄⁺ and OH⁻ in cells B6 and B7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2. Use Solver to adjust the values of pC to minimize the sum in cell F8</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5. Species</td>
<td>Mass and charge balances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NH₄⁺</td>
<td>3.00000000</td>
<td>1.0000E-03</td>
<td>C6 = 10⁻²B6</td>
<td>b₁ = F – [NH₄⁺] – [NH₃]</td>
</tr>
<tr>
<td>7</td>
<td>OH⁻</td>
<td>3.00000000</td>
<td>1.0000E-03</td>
<td>C7 = 10⁻²B7</td>
<td>b₂ = [NH₄⁺] + [H⁺] – [OH⁻]</td>
</tr>
<tr>
<td>8</td>
<td>NH₃</td>
<td>5.6865E-02</td>
<td>C8 = C6/C7/C12</td>
<td>F = 1e6*(F2+C6+C8)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>H⁺</td>
<td>1.0000E-11</td>
<td>C9 = D13/C7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F7 = 1e6*(C6+C9-C7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F8 = F7/F²+F₂²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>pKₐ = 4.755</td>
<td>Kₐ = 1.76E-05</td>
<td>10⁻²B12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>pKₐ = 14.00</td>
<td>Kₐ = 1.00E-14</td>
<td>10⁻²B13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spreadsheet for Problem 8-27.

Charge balance (omit [H⁺] and [OH⁻], whose concentrations are small compared with [Mg²⁺], [MgCl⁺], and [Cl⁻]):

\[2[Mg²⁺] + [MgCl⁺] = [Cl⁻]\] (B)

Mass balances:

\[[Mg²⁺] + [MgCl⁺] = F = 0.025 M\] (C)
\[[Cl⁻] + [MgCl⁺] = 2F = 0.050 M\] (D)

Only two of Equations (B), (C), and (D) are independent. If you double (C) and subtract (D), you will produce (B). We choose (C) and (D) as independent equations.

Equilibrium constant expression: Equation (A)

Count: 3 equations (A, C, D) and 3 unknowns ([Mg²⁺], [MgCl⁺], [Cl⁻])

Solve: We will use Solver to find (number of unknowns) − (number of equilibria) = 3 − 1 = 2 unknown concentrations.

In the spreadsheet on the next page, F = 0.025 M appears in cell G2. We estimate pMg²⁺ and pCl⁻ in cells B8 and B9. The ionic strength in cell B5 is given by the formula in cell H22. Excel must be set to allow for circular references as described on page 187. Sizes of Mg²⁺ and Cl⁻ are from Table 8-1 and the size of MgCl⁺ is a guess. Activity coefficients are computed in columns F and G. Mass balances \(b₁ = F – [Mg²⁺] – [MgCl⁺]\), and \(b₂ = 2F – [Cl⁻] – [MgCl⁺]\) appear in cells H13 and J14, and the sum of their squares is in cell H15. The charge balance is not used because it is not independent of the two mass balances. Solver is invoked to minimize cell H15 by varying pMg²⁺ and pCl⁻ in cells B8 and B9. From optimized concentrations, the ion-pair fraction \(\text{[MgCl⁺]} / F = 0.0815\) is computed in cell D13. This fraction is shown in the table in Box 8-1. As a check, total Mg, total Cl, and Kᵥᵢ are correctly computed in cells B21:B23.

8-29. (a) Following the example of Mg(OH)₂ in Section 8-5, write the equations, including activity coefficients, needed to find the solubility of Ca(OH)₂. Find equilibrium constants in Appendixes F and I.

(b) Suppose that the size of CaOH⁺ is 500 pm. Including activity coefficients, compute concentrations of all species, fraction of hydrolysis \(= [\text{CaOH}⁺] / ([\text{Ca}⁺] + [\text{CaOH}⁺])\), and total dissolved calcium \(= [\text{Ca}⁺] + [\text{CaOH}⁺]\). Compare your answer to the solubility of Ca(OH)₂ = 0.0198 M at 25°C.¹⁷

8-30. Systematic treatment of equilibrium for ion pairing. Let’s derive the fraction of ion pairing for the salts in Box 8-1, which are 0.025 F NaCl, Na₂SO₄, MgCl₂, and MgSO₄. Each case is somewhat different. All solutions will be near neutral pH because hydrolysis reactions of Mg²⁺, SO₄²⁻, Na⁺, and Cl⁻ have small equilibrium constants. Therefore, we assume that [H⁺] = [OH⁻] and omit these species from the calculations. We work MgCl₂ as an example and then you are asked to work each of the others. The ion-pair equilibrium constant, \(Kᵥᵢ\), comes from Appendix J.

Pertinent reaction:

\[\text{Mg}²⁺ + \text{Cl}⁻ = \text{MgCl}⁺ (aq)\]

\[Kᵥᵢ = \frac{[\text{MgCl}⁺ (aq)]}{[\text{Mg}²⁺] [\text{Cl}⁻]} \quad \log Kᵥᵢ = 0.6 \quad pKᵥᵢ = -0.6 \quad (A)\]
8.32. (a) Ion pairing. As in Problem 8-30, find the concentrations, ionic strength, and ion-pair fraction in 0.025 M MgSO₄.
(b) Two possibly important reactions that we did not consider are acid hydrolysis Mg²⁺ + H₂O ⇌ MgOH⁺ + H⁺ and base hydrolysis of SO₄²⁻. Write these two reactions and find their equilibrium constants in Appendices I and G. With the assumed pH near 7.0, and neglecting activity coefficients, show that both reactions are negligible.

8.33. Solubility with activity. Find the concentrations of the major species in a saturated aqueous solution of LiF. Consider these reactions:

LiF(s) ⇌ Li⁺ + F⁻ \(K_{sp} = [Li^+] [F^-] \)
LiF(s) ⇌ LiF(aq) \(K_{ion~pair} = [LiF(aq)]/[Li^+] [F^-] \)
F⁻ + H₂O ⇌ HF + OH⁻ \(K_f = K_a/K_w \)
H₂O ⇌ H⁺ + OH⁻ \(K_w = [H^+] [OH^-] \)

(a) Look up the equilibrium constants in the appendices and write their pK values. The ion pair reaction is the sum of LiF(s) ⇌ Li⁺ + F⁻ from Appendix F and Li⁺ + F⁻ ⇌ LiF(aq) from Appendix J. Write the equilibrium constant expressions and the charge and mass balances.
(b) Create a spreadsheet that uses activities to find the concentrations of all species and the ionic strength. Use pF⁻ and pOH⁻ as independent variables to estimate. It does not work to choose pF⁻ and pLi⁻ because either concentration fixes that of the other through the relation \(K_{sp} = [Li^+] [F^-] [F^-] \).

8.34. Heterogeneous equilibria and calcite solubility. If river water in Box 8-3 is saturated with calcite (CaCO₃), [Ca²⁺] is governed by the following equilibrium:

CaCO₃(s) ⇌ Ca²⁺ + CO₃²⁻ \(K_{sp} = 4.5 \times 10^{-9} \)
CO₂(g) ⇌ CO₂(aq) \(K_{CO₂} = 0.032 \)
CO₂(aq) + H₂O ⇌ HCO₃⁻ + H⁺ \(K_1 = 4.46 \times 10^{-7} \)
HCO₃⁻ ⇌ CO₃²⁻ + H⁺ \(K_2 = 4.69 \times 10^{-11} \)

(a) Combine these reactions to find the equilibrium constant for the reaction

CaCO₃(s) + CO₂(aq) + H₂O ⇌ Ca²⁺ + 2HCO₃⁻ \(K = ? \) (A)

(b) The mass balance for Reaction A is [HCO₃⁻] = 2[Ca²⁺]. Find [Ca²⁺] (in mol/L and in mg/L) in equilibrium with atmospheric CO₂ if \(R_{CO₂} = 4.0 \times 10^{-4} \) bar = \(10^{-3.4} \) bar. Locate this point on the line in Box 8-3.
(c) The concentration of Ca²⁺ in the Don River is 80 mg/L. What effective \(R_{CO₂} \) is in equilibrium with this much Ca²⁺? How can the river have this much CO₂?