Case Study: Online vs. Traditional Courses

Colleges and universities offer many courses online. Are online courses better, or at least no worse, than traditional in-class courses? If so, replacing the traditional format of teaching college courses with an online format may save money for colleges and therefore provide justification for transitioning more courses to the online format.

A study at a Carnegie research extension university compared learning online with learning in a traditional course. Students enrolled in one of two sections of the same course. One section was taught online, and the other in a traditional classroom. Due to an error in the printing of the course schedule by the office of scheduling, neither section was defined as an online class. The students were all surprised in the online section when they found out it was an online course.

Both sections of the course were taught by the same instructor, had exactly the same reading assignments, and the same examinations. Powerpoint slides used in the traditional class, together with accompanying audio files of the lectures, were required materials for the online class. The researcher used the scores on the first hour exam in the class as a measure of a student’s academic ability, amount of academic effort, and amount of time spent studying.

The score on a standardized final exam was used as a measure of student learning. Adjustments were made to account for differing student abilities, as measured by the first hour exam, as well as for the effects of sex. Is this a good study?
Talking about Experiments

Observational studies passively collect data. We observe, record, or measure, but we don’t interfere. Experiments actively produce data. Experimenters intentionally intervene by imposing some treatment in order to see what happens. All experiments and many observational studies are interested in the effect that one variable has on another variable. Here is the vocabulary we use to distinguish the variable that acts from the variable that is acted upon.

You will often see explanatory variables called independent variables and response variables called dependent variables. The idea is that the response variables depend on the explanatory variables. We avoid using these older terms, partly because “independent” has other and very different meanings in statistics.

Example 1
Learning on the Web

An optimistic account of learning online reports a study at Nova Southeastern University, Fort Lauderdale, Florida. The authors of the study claim that students taking undergraduate courses online were “equal in learning” to students taking the same courses in class.

College students are the subjects in this study. The explanatory variable considered in the study is the setting for learning (in class or online). The response variable is a student’s score on a test at the end of the course. Other variables were also measured in the study, including the score on a test on the course material before the courses started. Although this was not used as an explanatory variable in the study, prior knowledge of the course material might affect the response, and the authors wished to make sure this was not the case.

Example 2
The effects of a sexual assault resistance program

Young women attending universities are at risk of being sexually assaulted, primarily by male acquaintances. In an attempt to develop an effective strategy to reduce this risk, three universities in Canada investigated the effectiveness of a sexual assault resistance program. The program
How to Experiment Badly

Do students who take a course via the Web learn as well as those who take the same course in a traditional classroom? The best way to find out is to assign some students to the classroom and others to the Web. That’s an experiment. The Nova Southeastern University study was not an experiment because it imposed no treatment on the student subjects. Students chose for themselves whether to enroll in a classroom or an online version of a course. The study simply measured their learning. It turns out that the students who chose the online course were very different from those students who chose the traditional course. For example, their average score on a test on the course material given before the courses started

Key Terms

A **response variable** is a variable that measures an outcome or result of a study.

An **explanatory variable** is a variable that we think explains or causes changes in the response variable.

The individuals studied in an experiment are often called **subjects**.

A **treatment** is any specific experimental condition applied to the subjects. If an experiment has several explanatory variables, a treatment is a combination of specific values of these variables.
was 40.70, against only 27.64 for the classroom students. It’s hard to compare in-class versus online learning when the online students have a big head start. The effect of online versus in-class instruction is hopelessly mixed up with influences lurking in the background. Figure 5.1 (sometimes referred to as a causal diagram) shows the mixed-up influences in picture form.

Figure 5.1 Confounding in the Nova Southeastern University study. The influence of course setting (the explanatory variable) cannot be distinguished from the influence of student preparation (a lurking variable).

In the Nova Southeastern University study, student preparation (a lurking variable) is confounded with the explanatory variable. The study report claims that the two groups did equally well on the final test. We can’t say how much of the online group’s performance is due to their head start. That a group that started with a big advantage did no better than the more poorly prepared classroom students is not very impressive evidence of the wonders of web-based instruction. Here is another example, one in which a second experiment was proposed to untangle the confounding.

Both observational studies and one-track experiments often yield useless data because of confounding.
Example 3

Migraine

Migraine is a prevalent disease characterized by headaches that are often severe and throbbing and accompanied by associated symptoms, such as nausea, vomiting, vertigo, and cognitive dysfunction. A drug, fremanezumab, may be an effective preventative treatment for migraine.

Experiments that study the effectiveness of medical treatments on actual patients are called clinical trials. A possible clinical trial would be to give migraine sufferers fremanezumab and see if the number of migraine days in a 12-week period is reduced. This would be a “one-track” design—that is, only a single treatment is applied:

Impose treatment → Measure response

Fremanezumab → Reduced number of migraine days?

If the patients do suffer fewer migraine days, we can’t say that the fremanezumab caused the reduced symptoms. It might be just the **placebo effect**. A placebo is a dummy treatment with no active ingredients. Many patients respond favorably to any treatment, even a placebo. This response to a dummy treatment is the placebo effect. Perhaps the placebo effect is in our minds, based on trust in the doctor and expectations of a cure. Perhaps it is just a name for the fact that many patients improve for no visible reason. To determine if the results could be explained by the placebo effect, we would need to give a separate group of migraine sufferers a placebo and compare the response to the placebo to the response to fremanezumab. Unfortunately, the one-track design of the experiment meant that the placebo effect was confounded with any effect fremanezumab might have.

The researchers recognized this and used a better-designed experiment. Such an experiment might involve randomly dividing subjects with migraine into two groups. One group would be treated with fremanezumab as before. The other would receive a placebo. Subjects in both groups would not know which treatment they were receiving. Nor would the physicians recording the symptoms of the subjects know which treatment a subject received so that their diagnosis would not be influenced by such knowledge. An experiment in which neither subjects nor physicians recording the symptoms know which treatment was received is called double-blind.

with lurking variables. It is hard to avoid confounding when only observation is possible. Experiments offer better possibilities, as the migraine experiment shows. This experiment could be designed to include a group of subjects who receive only a placebo. This would allow us to see whether the treatment being tested does better than a placebo and so has more than the placebo effect going for it. Effective medical treatments pass the “placebo test” by outperforming a placebo.
Randomized Comparative Experiments

The first goal in designing an experiment is to ensure that it will show us the effect of the explanatory variables on the response variables. Confounding often prevents one-track experiments from doing this. The remedy is to compare two or more treatments. When confounding variables affect all subjects equally, any systematic differences in the responses of subjects receiving different treatments can be attributed to the treatments rather than to the confounding variables. This is the idea behind the use of a placebo. All subjects are exposed to the placebo effect because all receive some treatment. Here is an example of a new medical treatment that passes the placebo test in a direct comparison.

Example 4

Sickle-cell anemia

Sickle-cell anemia is an inherited disorder of the red blood cells that in the United States affects mostly blacks. It can cause severe pain and many complications. The National Institutes of Health carried out a clinical trial of the drug hydroxyurea for treatment of sickle-cell anemia. The subjects were 299 adult patients who had had at least three episodes of pain from sickle-cell anemia in the previous year. An episode of pain was defined to be a visit to a medical facility due to acute sickling-related pain that lasted more than four hours. The measurement of the length of the visit included all time spent after registration at the medical facility, including the time spent waiting to see a physician.

Simply giving hydroxyurea to all 299 subjects would confound the effect of the medication with the placebo effect and other lurking variables such as the effect of knowing that you are a subject in an experiment. Instead, approximately half of the subjects received hydroxyurea, and the other half received a placebo that looked and tasted the same. All subjects were treated exactly the same (same schedule of medical checkups, for example) except for the content of the medicine they took. Lurking variables, therefore, affected both groups equally and should not have caused any differences between their average responses.

The two groups of subjects must be similar in all respects before they start taking the medication. Just as in sampling, the best way to avoid bias in choosing which subjects get hydroxyurea is to allow impersonal chance to make the choice. A simple random sample of 152 of the subjects formed the hydroxyurea group; the remaining 147 subjects made up the placebo group. Figure 5.2 outlines the experimental design.
The experiment was stopped ahead of schedule because the hydroxyurea group had many fewer pain episodes than the placebo group. This was compelling evidence that hydroxyurea is an effective treatment for sickle-cell anemia, good news for those who suffer from this serious illness.

Figure 5.2 illustrates the simplest randomized comparative experiment, one that compares just two treatments. The diagram outlines the essential information about the design: random assignment to groups, one group for each treatment, the number of subjects in each group (it is generally best to keep the groups similar in size), what treatment each group gets, and the response variable we compare. Random assignment of subjects to groups can use any of the techniques discussed in Chapter 2. For example, we could choose a simple random sample, labeling the 299 subjects 1 to 299, then using software to select the 152 subjects for Group 1. The remaining 147 subjects form Group 2. Lacking software, label the 299 subjects 001 to 299 and read three-digit groups from the table of random digits (Table A) until you have chosen the 152 subjects for Group 1. The remaining 147 subjects form Group 2.

The placebo group in Example 4 is called a control group because comparing the treatment and control groups allows us to control the effects of lurking variables. A control group need not receive a dummy treatment such as a placebo. In Example 2, the students who were randomly assigned to the session providing access to brochures on sexual assault (as was common university practice) were considered to be a control group. Clinical trials often compare a new treatment for a medical condition—not with a placebo, but with a treatment that is already on the market. Patients who are randomly assigned to the existing treatment form the control group. To compare more than two treatments, we can randomly assign the available experimental subjects to as many groups as there are treatments. Here is an example with three groups.
Example 5 Conserving energy

Many utility companies have introduced programs to encourage energy conservation among their customers. An electric company considers placing electronic meters in households to show what the cost would be if the electricity use at that moment continued for a month. Will meters reduce electricity use? Would cheaper methods work almost as well? The company decides to design an experiment.

One cheaper approach is to give customers an app and information about using the app to monitor their electricity use. The experiment compares these two approaches (meter, app) and also a control. The control group of customers receives information about energy conservation but no help in monitoring electricity use. The response variable is total electricity used in a year. The company finds 60 single-family residences in the same city willing to participate, so it assigns 20 residences at random to each of the three treatments. Figure 5.3 outlines the design.

To carry out the random assignment, label the 60 households 01 to 60; then use software to select an SRS of 20 to receive the meters. From those not selected, use software to select the 20 to receive the app. The remaining 20 form the control group. Lacking software, label the 60 households 01 to 60. Enter Table A to select an SRS of 20 to receive the meters. Continue in Table A, selecting 20 more to receive the app. The remaining 20 form the control group.
The Logic of Experimental Design

The randomized comparative experiment is one of the most important ideas in statistics. It is designed to allow us to draw cause-and-effect conclusions. Be sure you understand the logic:

- Randomization produces groups of subjects that should be similar, on average, in all respects before we apply the treatments.
- Comparative design exposes all groups to similar conditions, other than the treatments they receive. This ensures that any additional lurking variables operate equally on all groups and, on average, groups differ only in the treatments they receive.
- Therefore, differences in the response variable must be due to the effects of the treatments.

We use chance to choose the groups in order to eliminate any systematic bias in assigning the subjects to groups. In the sickle-cell study, for example, a doctor might subconsciously assign the most seriously ill patients to the hydroxyurea group, hoping that the untested drug will help them. That would bias the experiment against hydroxyurea. Choosing an SRS of the subjects to be Group 1 gives everyone the same chance to be in either group. We expect the two groups to be similar in all respects—age, seriousness of illness, smoker or not, and so on. Chance tends to assign equal numbers of smokers to both groups, for example, even if we don’t know which subjects are smokers.

What about the effects of lurking variables not addressed by randomization—for example, those that arise after subjects have been randomly assigned to groups? The placebo effect is such a lurking variable. Its effect occurs only after the treatments are administered to subjects. If the groups are treated at different times of the year, so that some groups are treated

5.1 Vitamin supplements. Do multivitamin supplements improve health? To answer this question researchers recruited 2000 adults. All were provided with supplies of capsules and were asked to take one capsule per day. One thousand of the adults received capsules that were multivitamin supplements and one thousand received capsules that were a placebo. The researchers used an extensive questionnaire to assess the health of all participants at the start of the study and after two years into the study. Outline the design of this study using a diagram like Figures 5.2 and 5.3.

Now it’s your turn

You now have enough information to read the “What’s the verdict?” story on page 108, and to answer the first four questions.

The randomized comparative experiment is one of the most important ideas in statistics. It is designed to allow us to draw cause-and-effect conclusions. Be sure you understand the logic:

- Randomization produces groups of subjects that should be similar, on average, in all respects before we apply the treatments.
- Comparative design exposes all groups to similar conditions, other than the treatments they receive. This ensures that any additional lurking variables operate equally on all groups and, on average, groups differ only in the treatments they receive.
- Therefore, differences in the response variable must be due to the effects of the treatments.

We use chance to choose the groups in order to eliminate any systematic bias in assigning the subjects to groups. In the sickle-cell study, for example, a doctor might subconsciously assign the most seriously ill patients to the hydroxyurea group, hoping that the untested drug will help them. That would bias the experiment against hydroxyurea. Choosing an SRS of the subjects to be Group 1 gives everyone the same chance to be in either group. We expect the two groups to be similar in all respects—age, seriousness of illness, smoker or not, and so on. Chance tends to assign equal numbers of smokers to both groups, for example, even if we don’t know which subjects are smokers.

What about the effects of lurking variables not addressed by randomization—for example, those that arise after subjects have been randomly assigned to groups? The placebo effect is such a lurking variable. Its effect occurs only after the treatments are administered to subjects. If the groups are treated at different times of the year, so that some groups are treated
Principles of experimental design

The basic principles of statistical design of experiments are:

1. **Control** the effects of lurking variables on the response by ensuring all subjects are affected similarly by these lurking variables. Then simply compare two or more treatments.

2. **Randomize**—use impersonal chance to assign subjects to treatments so treatment groups are similar, on average.

3. **Use enough subjects** in each group to reduce chance variation in the results.

during flu season and others not, higher exposure of some groups to the flu could be a lurking variable. In a comparative design, we try to ensure that these lurking variables operate similarly on all groups. All groups receive some treatment in order to ensure they are equally exposed to the placebo effect. All groups receive treatment at the same time, so all experience the same exposure to the flu.

It may not surprise you to learn that medical researchers adopted randomized comparative experiments only slowly—many doctors think they can tell “just by watching” whether a new therapy helps their patients. Not so. There are many examples of medical treatments that became popular on the basis of one-track experiments and were shown to be worth no more than a placebo when some skeptic tried a randomized comparative experiment. One search of the medical literature looked for therapies studied both by proper comparative trials and by trials with “historical controls.” A study with historical controls compares the results of a new treatment, not with a control group, but with how well similar patients have done in the past. Of the 56 therapies studied, 44 came out winners with respect to historical controls. But only 10 passed the placebo test in proper randomized comparative experiments. Expert judgment is too optimistic even when aided by comparison with past patients. At present, U.S. law requires that new drugs be shown to be both safe and effective by randomized comparative trials. There is no such requirement for other medical treatments, such as surgery. A search of the Internet of “comparisons with historical controls” found recent studies for other medical treatments that have used historical controls.

There is one important caution about randomized experiments. Like random samples, they are subject to the laws of chance. Just as an SRS of voters might, by bad luck, choose people nearly all of whom have the same political party preference, a random assignment of subjects might, by bad luck, put nearly all the smokers in one group. We know that if we choose large random samples, it is very likely that the sample will match the population well. In the same way, if we use many experimental subjects, it is very likely that random assignment will produce groups that match closely. More subjects means that there is less chance variation among the treatment groups and less chance variation in the outcomes of the experiment. “Use enough subjects” joins “compare two or more treatments” and “randomize” as a basic principle of statistical design of experiments.

Statistical Significance

The presence of chance variation requires us to look more closely at the logic of randomized comparative experiments. We cannot say that any difference in the average number of pain episodes between the hydroxyurea group and
How to Live with Observational Studies

Do children who are bullied suffer depression as adults? Do doctors discriminate against women in treating heart disease? Are e-cigarettes safe? These are cause-and-effect questions, so we reach for our favorite tool, the randomized comparative experiment. Sorry. We refuse to require children to be bullied. We can’t use random digits to assign heart disease patients to be men or women. We are reluctant to require people to use e-cigarettes because they may have harmful effects.

An observed effect of a size that would rarely occur by chance is called statistically significant.

Key Terms

An observed effect of a size that would rarely occur by chance is called statistically significant.

the control group must be due to the effect of the drug. Even if both treatments are the same, there will always be some chance differences between the individuals in the control group and those in the treatment group. Randomization eliminates just the systematic differences between the groups.

The difference between the average number of pain episodes for subjects in the hydroxyurea group and the average for the control group was “highly statistically significant.” That means that a difference of this size would almost never happen just by chance. We do indeed have strong evidence that hydroxyurea beats a placebo in helping sickle-cell disease sufferers. You will often see the phrase “statistically significant” in reports of investigations in many fields of study. It tells you that the investigators found good “statistical” evidence for the effect they were seeking.

Of course, the actual results of an experiment are more important than the seal of approval given by statistical significance. The treatment group in the sickle-cell experiment had an average of 2.5 pain episodes per year as opposed to 4.5 per year in the control group. That’s a big enough difference to be important to people with the disease. A difference of 2.5 versus 2.8 would be much less interesting even if it were statistically significant.

How large an observed effect must be in order to be regarded as statistically significant depends on the number of subjects involved. A relatively small effect—one that might not be regarded as practically important—can be statistically significant if the size of the study is large. Thus, in the sickle-cell experiment, an average of 2.50 pain episodes per year versus 2.51 per year in the control group could be statistically significant if the number of subjects involved is sufficiently large. For a very large number of subjects, the average number of pain episodes per year should be almost the same if differences are due only to chance. It is also true that a very large effect may not be statistically significant. If the number of subjects in an experiment is small, it may be possible to observe large effects simply by chance. We will discuss these issues more fully in Parts III and IV.

Thus, in assessing statistical significance, it is helpful to know the magnitude of the observed effect and the number of subjects. Perhaps a better term than “statistically significant” might be “statistically dissimilar.”
The best data we have about these and many other cause-and-effect questions come from observational studies. We know that observation is a weak second-best to experiment, but good observational studies are far from worthless and we will discuss this further in Chapter 15. What makes a good observational study?

First, good studies are **comparative** even when they are not experiments. We compare random samples of people who were bullied as children with those who were not bullied. We compare how doctors treat men and women patients. We might compare drivers talking on cell phones with the *same* drivers when they are not on the phone. We can often combine comparison with **matching** in creating a control group. To see the effects of taking a painkiller during pregnancy, we compare women who did so with women who did not. From a large pool of women who did not take the drug, we select individuals who match the drug group in age, education, number of children, and other lurking variables. We now have two groups that are similar in all these ways, so that these lurking variables should not affect our comparison of the groups. However, if other important lurking variables, not measurable or not thought of, are present, they will affect the comparison, and confounding will still be present.

Matching does not entirely eliminate confounding. People who were bullied as children may have characteristics that increase susceptibility to victimization as well as independently increasing the risk of depression. They are more likely to be female, have had concurrent emotional or mental health problems as a child, have parents who suffer from depression, or have experienced maltreatment at home as a child. Although matching can reduce some of these differences, direct comparison of rates of depression in young adults who were bullied as children and in young adults who were not bullied as children would still confound any effect of bullying with the effects of mental health issues in childhood, mental health issues of the parents, and maltreatment as a child. A good comparative study **measures and adjusts for confounding variables.** If we measure sex, the presence of mental health issues as a child, the presence of mental health issues in the parents, and aspects of the home environment, there are statistical techniques that reduce the effects of these variables on rates of depression so that (we hope) only the effect of bullying itself remains.

Example 6

Bullying and depression

A recent study in the United Kingdom examined data on 3898 participants in a large observational study for which they had information on both victimization by peers at age 13 and the presence of depression at age 18. The researchers also had information on many other variables, not just the
explanatory variable (bullying at age 13) and the response variable (presence of depression at age 18).

The research article said:

Compared with children who were not victimized those who were frequently victimized by peers had over a twofold increase in the odds of depression . . . This association was slightly reduced when adjusting for confounders . . .

That “adjusting for confounders” means that the final results were adjusted for differences between the two groups. Adjustment reduced the association between bullying at age 13 and depression at age 18, but still left a nearly twofold increase in the odds of depression.

We note that the researchers do go on to mention that the use of observational data does not allow them to conclude the associations are causal.

Example 7

Sex bias in treating heart disease?

Doctors are less likely to give aggressive treatment to women with symptoms of heart disease than to men with similar symptoms. Is this because doctors are sexist? Not necessarily. Women tend to develop heart problems much later than men so that female heart patients are older and often have other health problems. That might explain why doctors proceed more cautiously in treating them.

This is a case for a comparative study with statistical adjustments for the effects of confounding variables. There have been several such studies, and they produce conflicting results. Some show, in the words of one doctor, “When men and women are otherwise the same and the only difference is gender, you find that treatments are very similar.” Other studies find that women are undertreated even after adjusting for differences between the female and male subjects.

As Example 7 suggests, statistical adjustment is complicated. Randomization creates groups that are similar in all variables known and unknown. Matching and adjustment, on the other hand, can’t work with variables the researchers didn’t think to measure. Even if you believe that the researchers thought of everything, you should be a bit skeptical about statistical adjustment. There’s lots of room for cheating in deciding which variables to adjust for. And the “adjusted” conclusion is really something like this:

If female heart disease patients were younger and healthier than they really are, and if male patients were older and less healthy than they really are, then the two groups would get the same medical care.
This may be the best we can get, and we should thank statistics for making such wisdom possible. But we end up longing for the clarity of a good experiment.

Watch the Cheerios commercial mentioned in the “What’s the verdict?” story on page 108, and answer the remaining questions.

Chapter 5: Statistics in Summary

- Statistical studies often try to show that changing one variable (the explanatory variable) causes changes in another variable (the response variable).
- In an experiment, we actually set the explanatory variables ourselves rather than just observe them.
- Observational studies and one-track experiments that simply apply a single treatment often fail to produce useful data because confounding with lurking variables makes it impossible to say what the effect of the treatment was.
- In a randomized comparative experiment we compare two or more treatments, use chance to decide which subjects get each treatment, and use enough subjects so that the effects of chance are small.
- Comparing two or more treatments controls lurking variables affecting all subjects, such as the placebo effect, because they act on all the treatment groups.
- Differences among the effects of the treatments so large that they would rarely happen just by chance are called statistically significant.
- Observational studies of cause-and-effect questions are more impressive if they compare matched groups and measure as many lurking variables as possible to allow statistical adjustment.

This chapter summary will help you evaluate the Case Study.

Link It

In Chapter 1 we saw that experiments are best suited for drawing conclusions about whether a treatment causes a change in a response. In this chapter, we learned that only well-designed experiments, in particular randomized comparative experiments, provide a sound basis for such conclusions. Statistically significant differences among the effects of treatments are the best available evidence that changing the explanatory variable really causes changes in the response.

When it is not possible to do an experiment, observational studies that measure as many lurking variables as possible and make statistical adjustments for their effects are sometimes used to answer cause-and-effect questions. However, they remain a weak second-best to well-designed experiments.
Case Study Evaluated

Use what you have learned in this chapter to evaluate the Case Study that opened the chapter. Start by reviewing the Chapter Summary. Then answer each of the following questions in complete sentences. Be sure to communicate clearly enough for any of your classmates to understand what you are saying.

First, here are the results of the study. Controlling for differences in student's abilities and sex, there was no statistically significant difference between exam scores in the two sections.

1. Is this study an experiment or an observational study?
2. What confounding variables did the researcher adjust for?
3. Explain what the phrase “no statistically significant difference” means.
4. The researcher stated that the error in scheduling resulted in a research design approaching that of a randomized experiment. What do you think the researcher meant by this statement? Do you agree? Explain your answer.

In this chapter you:

- Applied the language of experiments, by the use of terms such as explanatory and response variable, subjects, and treatments.
- Applied the logic of experiments through the use of randomized comparative studies and statistical significance to design and evaluate experiments.
- Determined the strengths and weaknesses of studies by assessing whether a study has controlled for lurking variables.

macmillan learning Online Resources

- The Snapshots video, *Types of Studies*, and the StatClips video, *Types of Studies*, both review the differences between experiments and observational studies.
- The Snapshots video, *Introduction to Statistics*, describes real-world situations for which knowledge of statistical ideas are important.
- The StatBoards video, *Factors and Treatments*, identifies subjects, factors, treatments, and response variables in additional experiments.
- The StatBoards video, *Outlining an Experiment*, provides additional examples of outlining an experiment using figures similar to those given in this chapter.
Check the Basics

For Exercise 5.1, see page 95.

5.2 Explanatory and response variables. Does church attendance lengthen people’s lives? One study of the effect of attendance at religious services gathered data from 2001 obituaries. The researchers measured whether the obituary mentioned religious activities and length of life. Which of the following is true?

(a) In this study, length of life is the explanatory variable and mention of religious activities is the response variable.
(b) In this study, mention of religious activities is the explanatory variable and length of life is the response variable.
(c) In this study, the 2001 obituaries are the explanatory variable and the information in the obituary is the response variable.
(d) In this study, there are no explanatory and response variables because these data come from a survey of obituaries.

5.3 Observational study or experiment? The study described in Exercise 5.2 is

(a) a randomized comparative experiment.
(b) an experiment, but not a randomized experiment.
(c) an observational study.
(d) neither an experiment nor an observational study but, instead, a sample survey.

5.4 Lurking variables. People who are active in religious activities are less likely to smoke or drink excessively than people who are not active in religious activities. In the study described in Exercise 5.2, which of the following is true?

(a) smoking is a lurking variable, but excessive drinking is not.
(b) excessive drinking is a lurking variable, but smoking is not.
(c) smoking and excessive drinking are both lurking variables.
(d) neither smoking nor excessive drinking are lurking variables.

5.5 Statistical significance. In the study described in Exercise 5.2, researchers found that there was a statistically significant difference in longevity between those whose obituary mentioned religious activities and those whose obituary did not. Those whose obituary mentioned religious activities lived more than 5 years longer. Statistical significance here means

(a) the size of the observed difference in longevity is not likely to be due to chance.
(b) the size of the observed difference in longevity is likely to be due to chance.
(c) the size of the observed difference in longevity has a 5 times greater chance of occurring.
(d) the size of the observed difference in longevity has a one-fifth chance of occurring.

5.6 Randomized comparative experiment? For which of the following studies would it be possible to conduct a randomized comparative experiment?

(a) A study to determine if the month you were born in affects how long you will live.
(b) A study to determine if taking Tylenol dulls your emotions.
(c) A study to determine if a person’s sex affects their salary.
(d) A study to determine if the wealth of parents affects the wealth of their children.
Chapter 5 Exercises

5.7 Digital media and ADHD. Researchers identified 2587 10th grade students in the Los Angeles area who did not have significant symptoms of ADHD (Attention-Deficit/Hyperactivity Disorder). These students were followed for approximately two years. The frequency with which each student used digital media over the two-year period was recorded. At the end of the two-year period, students were again tested for symptoms of ADHD. Researchers found that the higher the frequency of digital media use, the more likely the student was to have developed symptoms of ADHD at the end of the study.

(a) What are the explanatory and response variables?
(b) Explain carefully why this study is not an experiment.
(c) Explain why confounding prevents us from concluding that the more one uses digital media, the more likely one is to develop ADHD.

5.8 Birth month and health. A Columbus Dispatch article reported that researchers at the Columbia University Department of Medicine examined records for an incredible 1.75 million patients born between 1900 and 2000 who had been treated at Columbia University Medical Center. Using statistical analysis, the researchers found that for cardiovascular disease, those born in the fall (September through December) were more protected, while those born in winter and spring (January to June) had higher risk. And because so many lives are cut short due to cardiovascular diseases, being born in the autumn was actually associated with living longer than being born in the spring. Is this conclusion the result of an experiment? Why or why not? What are the explanatory and response variables?

5.9 Unhappy marriage, unhappy gut. An article in Newsweek reported that, to investigate how an unhappy marriage can affect an individual’s health, scientists recruited 43 healthy couples between 24 and 61 years old who had been married for at least three years. The researchers asked couples to discuss touchy topics likely to spark disagreement, such as money or in-laws, and taped the conversations. They used this footage to analyze verbal and nonverbal modes of conflict, including eye rolling. The team also took blood samples from the couples before and after arguing, and found those who were most hostile toward their spouses had higher levels of LPS-binding protein, a biomarker for a leaky gut. Scientists found the highest levels of LPS-binding protein in participants who had the nastiest fights and a history of mood disorders such as depression. The biomarker was also linked to inflammation in the body. Couples choose to argue and engage in hostile behavior when discussing touchy subjects. And anger and unhappiness that can lead to fighting may be symptoms of a physiological or mental health problem. Explain why these facts make any conclusion about cause and effect untrustworthy. Use the language of lurking variables and confounding in your explanation, and draw a picture like Figure 5.1 to illustrate your explanation.

5.10 Is obesity contagious? A study closely followed a large social network of 12,067 people for 32 years, from 1971 until 2003. The researchers found that when a person gains weight, close friends tend to gain weight, too. The researchers reported that obesity can spread from person to person, much like a virus.

Explain why, when a person gains weight, close friends also tend to gain weight does not necessarily mean that weight gain in a person causes weight gains in close friends. In particular, identify some lurking variables whose effect on weight gain may be confounded with the effect of weight gains in close friends. Draw a picture like Figure 5.1 to illustrate your explanation.

5.11 Aspirin and heart attacks. Can aspirin help prevent heart attacks? The Physicians’ Health
Study, a large medical experiment involving 22,000 male physicians, attempted to answer this question. One group of about 11,000 physicians took an aspirin every second day, while the rest took a placebo. After several years, the study found that subjects in the aspirin group had significantly fewer heart attacks than subjects in the placebo group.

(a) Identify the experimental subjects, the explanatory variable and the values it can take, and the response variable.

(b) Use a diagram to outline the design of the Physicians’ Health Study. (When you outline the design of an experiment, be sure to indicate the size of the treatment groups and the response variable. The diagrams in Figures 5.2 and 5.3 are models.)

(c) What do you think the term “significantly” means in “significantly fewer heart attacks”?

5.12 The pen is mightier than the keyboard.

Is longhand note-taking more effective for learning than taking notes on a laptop? Researchers at two universities studied this issue. In one of the studies, 65 students listened to five talks. Students were randomly assigned either a laptop or a notebook for purposes of taking notes. Assume that 33 students were assigned to use laptops and 32 longhand. Whether taking notes on a laptop or by hand in a notebook, students were instructed to use their normal note-taking strategy. Thirty minutes after the lectures, participants were tested with conceptual application questions based on the lectures. Those taking notes by hand performed better than those taking notes on a laptop. Why is instructing students to use their normal note-taking strategy a problem if the goal is to determine the effect on learning of note-taking on a laptop as compared to note-taking by hand?

5.13 Neighborhood’s effect on grades.

To study the effect of neighborhood on academic performance, 1000 families were given federal housing vouchers to move out of their low-income neighborhoods. No improvement in the academic performance of the children in the families was found one year after the move.

Explain clearly why the lack of improvement in academic performance after one year does not necessarily mean that neighborhood does not affect academic performance. In particular, identify some lurking variables whose effect on academic performance may be confounded with the effect of neighborhood. Use a picture like Figure 5.1 to illustrate your explanation.

5.14 The pen is mightier than the keyboard, continued.

(a) Outline the design of Exercise 5.12 for the experiment to compare the two treatments (laptop note-taking and longhand note-taking) that students received for taking notes. When you outline the design of an experiment, be sure to indicate the size of the treatment groups and the response variable. The diagrams in Figures 5.2 and 5.3 are models.

(b) If you have access to statistical software, use it to carry out the randomization required by your design. Otherwise, use Table A, beginning at line 119, to do the randomization your design requires.

5.15 Learning on the Web.

The discussion following Example 1 notes that the Nova Southeastern University study does not tell us much about Web versus classroom learning because the students who chose the Web version were much better prepared. Describe the design of an experiment to get better information.

5.16 Do antioxidants prevent cancer?

People who eat lots of fruits and vegetables have lower rates of colon cancer than those who eat little of these foods. Fruits and vegetables are rich in “antioxidants” such as vitamins A, C, and E. Will taking antioxidants help prevent colon cancer? A clinical trial studied this question with 864 people who were at risk for colon cancer. The subjects were divided into four groups: daily beta-carotene, daily vitamins C and E, all three vitamins every day, and daily placebo. After four years, the researchers were
Chapter 5 Exercises 105

surprised to find no significant difference in colon cancer among the groups.

(a) What are the explanatory and response variables in this experiment?

(b) Outline the design of the experiment. (The diagrams in Figures 5.2 and 5.3 are models.)

(c) Assign labels to the 864 subjects. If you have access to statistical software, use it to choose the first five subjects for the beta-carotene group. Otherwise, use Table A, starting at line 118, to choose the first five subjects for the beta-carotene group.

(d) What does “no significant difference” mean in describing the outcome of the study?

(e) Suggest some lurking variables that could explain why people who eat lots of fruits and vegetables have lower rates of colon cancer. The results of the experiment suggest that these variables, rather than the antioxidants, may be responsible for the observed benefits of fruits and vegetables.

5.17 Conserving energy. Example 5 describes an experiment to learn whether providing households with electronic meters or with an app will reduce their electricity consumption. An executive of the electric company objects to including a control group. He says, “It would be cheaper to just compare electricity use last year [before the meter or app was provided] with consumption in the same period this year. If households use less electricity this year, the meter or app must be working.” Explain clearly why this design is inferior to that in Example 5.

5.18 The safest level of drinking is none. The news site, Vox, reported on a study in the journal Lancet. Researchers looked at 700 studies from around the world, involving millions of people, and concluded that “the safest level of drinking is none.” The study found that the more people drank across the globe, the greater their risk of cancer rose. In their paper, the researchers stated, “Alcohol use is a leading risk factor for global disease burden and causes substantial health loss,” and that “the level of consumption that minimizes health loss is zero.”

However, the article in Vox goes on to say that “the data in the paper do not support a zero drinks recommendation.” Why do you think Vox makes this statement?

5.19 Sounds big. Does a lower pitch of a voice in an ad lead consumers to envision a bigger product? To test this, researchers had students listen to a radio advertisement for the new Southwest Turkey Club Sandwich at a fictitious sandwich chain, Cosmo. Half the students were randomly assigned to hear the ad spoken at a high pitch and the other half at a low pitch. In all other respects, the ads were identical and no clues were given as to the size of the sandwich. After hearing the ad, students were asked to rate the perceived size of the sandwich on a 7 point scale, ranging from −3 (much smaller than average) to +3 (much larger than average).

(a) What is the explanatory variable?

(b) What is the response variable, and what values does it take?

(c) Could the researchers have used a placebo in this experiment? Explain.

5.20 Reducing health care spending. Will people spend less on health care if their health insurance requires them to pay some part of the cost themselves? An experiment on this issue asked if the percentage of medical costs that is paid by health insurance has an effect both on the amount of medical care that people use and on their health. The treatments were four insurance plans. Each plan paid all medical costs above a ceiling. Below the ceiling, the plans paid 100%, 75%, 50%, or 0% of costs incurred.

(a) Outline the design of a randomized comparative experiment suitable for this study.

(b) Briefly describe the practical and ethical difficulties that might arise in such an experiment.

5.21 Sounds big. Consider again the voice pitch experiment of Exercise 5.19.

(a) Use a diagram to describe a randomized comparative experimental design for this experiment.

(b) Assume there were 20 subjects used in the experiment. Use software or Table A, starting at line 120, to do the randomization required by your design.

5.22 Treating drunk drivers. Once a person has been convicted of drunk driving, one purpose of court-mandated treatment or punishment is to prevent future offenses of the same kind. Suggest three different treatments that a court might require. Then outline the design of an experiment to compare their effectiveness. Be sure to specify the response variables you will measure.

5.23 Statistical significance. Exercise 5.19 describes a randomized comparative experiment to determine the effect of the pitch of a voice in a radio advertisement for a new sandwich on the perceived size of the sandwich. The researchers concluded that there was a statistically significant effect of pitch on perceived size, with those who heard the lower pitched voice perceiving the sandwich to be larger than those who heard the higher pitched voice. Explain what “statistically significant” means in the context of this experiment, as if you were speaking to a person who knows no statistics.

5.24 Statistical significance. A study, mandated by Congress when it passed No Child Left Behind in 2002, evaluated 15 reading and math software products used by 9424 students in 132 schools across the country during the 2004–2005 school year. It is the largest study that has compared students who received the technology with those who did not, as measured by their scores on standardized tests. There were no statistically significant differences between students who used software and those who did not. Explain the meaning of “no statistically significant differences” in plain language.

5.25 Let them eat chocolate. There is some evidence that cocoa has beneficial effects on heart health. To study this, researchers decide to give subjects either a cocoa pill or a placebo daily for a two-year period. Measurements of the subjects’ heart health before and after the two-year period are to be compared. You have 50 people who are willing to serve as subjects.

(a) Outline an appropriate design for the experiment.

(b) The names of the subjects appear below. If you have access to statistical software, use it to carry out the randomization required by your design. Otherwise, use Table A, beginning at line 131, to do the randomization required by your design. List the subjects you will assign to the group who will do 30 minutes of daily exercise.

<table>
<thead>
<tr>
<th>Aaron</th>
<th>Gehrig</th>
<th>Koufax</th>
<th>Paige</th>
<th>Terry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander</td>
<td>Gibson</td>
<td>Lajoie</td>
<td>Palmer</td>
<td>Tinker</td>
</tr>
<tr>
<td>Banks</td>
<td>Greenberg</td>
<td>Lemon</td>
<td>Robinson</td>
<td>Traynor</td>
</tr>
<tr>
<td>Berra</td>
<td>Herman</td>
<td>Lombardi</td>
<td>Ruffing</td>
<td>Vance</td>
</tr>
<tr>
<td>Campanella</td>
<td>Hornsby</td>
<td>Mantle</td>
<td>Ruth</td>
<td>Wagner</td>
</tr>
<tr>
<td>Cobb</td>
<td>Hubbell</td>
<td>Mays</td>
<td>Seaver</td>
<td>Waner</td>
</tr>
<tr>
<td>Dean</td>
<td>Jackson</td>
<td>Mize</td>
<td>Sisler</td>
<td>Williams</td>
</tr>
<tr>
<td>Duffy</td>
<td>Johnson</td>
<td>Musial</td>
<td>Snider</td>
<td>Wynn</td>
</tr>
<tr>
<td>Feller</td>
<td>Kaline</td>
<td>Newhouser</td>
<td>Spahn</td>
<td>Yastrzemski</td>
</tr>
<tr>
<td>Foxx</td>
<td>Kiner</td>
<td>Ott</td>
<td>Speaker</td>
<td>Young</td>
</tr>
</tbody>
</table>

5.26 Treating prostate disease. A large study used records from Canada’s national health care system to compare the effectiveness of two ways to treat prostate disease. The two treatments are traditional surgery and a new method that does not require surgery. The records described many patients whose doctors had chosen one or the other method. The study found that patients treated by the new method were significantly more likely to die within eight years.

(a) Further study of the data showed that this conclusion was wrong. The extra deaths
among patients treated with the new method could be explained by lurking variables. What lurking variables might be confounded with a doctor’s choice of surgical or nonsurgical treatment? For example, why might a doctor avoid assigning a patient to surgery?

(b) You have 300 prostate patients who are willing to serve as subjects in an experiment to compare the two methods. Use a diagram to outline the design of a randomized comparative experiment.

5.27 Prayer and meditation. You read in a magazine that “nonphysical treatments such as meditation and prayer have been shown to be effective in controlled scientific studies for such ailments as high blood pressure, insomnia, ulcers, and asthma.” Explain in simple language what the article means by “controlled scientific studies” and why such studies might show that meditation and prayer are effective treatments for some medical problems.

5.28 Exercise and bone loss. Does regular exercise reduce bone loss in postmenopausal women? Here are two ways to study this question. Which design will produce more trustworthy data? Explain why.

1. A researcher finds 1000 postmenopausal women who exercise regularly. She matches each with a similar postmenopausal woman who does not exercise regularly, and she follows both groups for five years.

2. Another researcher finds 2000 postmenopausal women who are willing to participate in a study. She assigns 1000 of the women to a regular program of supervised exercise. The other 1000 continue their usual habits. The researcher follows both groups for five years.

5.29 Traumatic brain injuries and suicide. Traumatic brain injuries (TBI) can have serious long-term consequences, including psychiatric disorders. To determine if there is a relation between TBI and the risk of suicide, researchers examined the medical records of 7,418,391 individuals living in Denmark from 1980 to 2014. The researchers found that suicide rates were statistically significantly higher in those individuals who had medical contact for TBI compared to those without TBI. However, the medical records did not contain information about TBI suffered prior to 1977, nor did the records indicate what treatment patients with TBI received. The sample size in this study is very large, so is this good evidence that people with TBI are at greater risk for suicide than those without TBI? Explain your answer.

5.30 Randomization at work. To demonstrate how randomization reduces confounding, consider the following situation. A nutrition experimenter intends to compare the weight gain of prematurely born infants fed Diet A with those fed Diet B. To do this, she will feed each diet to 10 prematurely born infants whose parents have enrolled them in the study. She has available 10 baby girls and 10 baby boys. The researcher is concerned that baby boys may respond more favorably to the diets, so if all the baby boys were fed diet A, the experiment would be biased in favor of Diet A.

(a) Label the infants 00, 01, ..., 19. Use Table A to assign 10 infants to Diet A. Or, if you have access to statistical software, use it to assign 10 infants to Diet A. Do this four times, using different parts of the table (or different runs of your software), and write down the four groups assigned to Diet A.

(b) The infants labeled 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 are the 10 baby boys. How many of these infants were in each of the four Diet A groups that you generated? What was the average number of baby boys assigned to Diet A? What does this suggest about the effect of randomization on reducing confounding?

Exploring the Web
Access these exercises on the text website: macmillanlearning.com/scc10e.
What’s the Verdict?

The *American Journal of Clinical Nutrition* published a research study to investigate the effect of a diet rich in whole grains on metabolism. Fifty adults with metabolic syndrome were randomly divided into two groups. Both groups had a diet of reduced calories, but for one of the groups, all of their grains were whole grains (brown rice, whole wheat bread, etc.) and the other group got all their grains from refined grains (white bread, white rice, etc.). Both groups lost weight at the end of 12 weeks. On average, those in the refined-grain group lost 11 pounds while those in the whole-grain group lost 8 pounds but lost more body fat from their abdomens and had other health benefits than those in the refined grain group.

Questions

WTV5.1. Is this an experiment or observational study?

WTV5.2. What are the treatments?

WTV5.3. What are the response variables?

WTV5.4. Draw a diagram like Figures 5.2 and 5.3 to illustrate the design of this study.

Watch this commercial for Cheerios and pay close attention to the wording that they use with their claims: https://www.youtube.com/watch?v=_49QCb2-258

WTV5.5. What is the exact wording of the claim in the Cheerios commercial?

(a) People who eat Cheerios tend to weigh less.

(b) People who eat whole grains tend to weigh less.

(c) People who choose whole grains tend to weigh less.

Let’s investigate what this claim might mean. Could this be a true statement? What is the evidence? What possible lurking variables might be involved?

WTV5.6. What could “choose” mean? Indicate all that apply.

(a) Picking whole grains on a survey about which foods are healthiest.

(b) Picking whole grains on a survey about which foods they are most likely to eat.

(c) Picking whole grains in a focus group about healthy foods.

(d) Reporting what foods are in their pantry at home.

(e) Purchasing whole-grain foods at the grocery store.

WTV5.7. What could “tend to weigh less” mean? Indicate all that apply.

(a) The fiber in whole grains build muscle.

(b) The fiber in whole grains help you to lose weight.

(c) Whole grains stunt your growth.

(d) Whole grains are more likely to be selected by moms, and women, who on average, weigh less than men.

(e) Eating whole grains are the only thing that could make you lose weight.

(f) People who chose whole grains are probably also doing other healthy things like eating more fruits and vegetables and getting regular exercise.

WTV5.8. What are some possible lurking variables? (Lurking variables that could be involved in the relationship between whole grains and weighing less that weren’t listed in the original claim.) Indicate all that apply.

(a) Other things people are eating besides whole grains.

(b) Exercise.

(c) Genetics.

(d) How much somebody likes Cheerios.

(e) Whether somebody eats their Cheerios at breakfast or later in the day.
WTV5.9. Do you think that the study by the *American Journal of Clinical Nutrition* backs up the claim made in the Cheerios ad? Why or why not?

(a) Yes, because the whole-grain group lost more weight than the refined-grain group.

(b) No, because the whole-grain group lost less weight than the refined-grain group.

(c) No, because this study didn’t use Cheerios.

(d) Yes, because abdominal fat is the most important kind to reduce.